Fisica
Numero che indica in qual modo le grandezze fondamentali intervengono nelle singole grandezze derivate, individuandone l’unità di misura in funzione delle unità fondamentali. Una certa grandezza [...] d. di ricoprimento (o capacitaria) e la d. di Hausdorff-Besikovich. La d. di ricoprimento di un sottoinsieme limitato E di uno spaziometrico, cioè sul quale è data una nozione di distanza, è definita da
,
dove N(r) è il numero minimo di sfere di ...
Leggi Tutto
In matematica, spazio a più dimensioni; il numero di queste si indica generalmente con n, nel qual caso si parla anche di spazio di dimensione n; poiché lo spazio ordinario è a tre dimensioni, in senso [...] ), detti coordinate del punto stesso; la sua struttura è quella che si ottiene trasportando la struttura di spaziometrico dell’ordinario spazio euclideo a tre dimensioni, e ciò viene fatto valendosi dello strumento analitico. Così, si definisce come ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] La distanza è uno scarto finito d per il quale d(x,y)=0 implica x=y; X costituisce allora uno spaziometrico. Lo spazio topologico X è detto metrizzabile se ammette una distanza compatibile con la topologia. Si studiano nello stesso contesto i gruppi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...] sua tesi del 1906, insiemi di funzioni come l'insieme F(X) di tutte le funzioni continue in X∈R, con X spaziometrico. Se, per esempio, X è l'intervallo unitario I, il concetto di convergenza uniforme diviene molto più semplice da trattare in termini ...
Leggi Tutto
metrica riemanniana
Luca Tomassini
Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] la più piccola delle lunghezze delle curve regolari a tratti con estremi p,q. Con questa distanza la varietà Mν diviene uno spaziometrico. Due varietà riemanniane Mν1 e Mν2 si dicono isometriche se esiste un mappa ϕ:Mν1→Mν2 tale che
Una curva che ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] ∥a∥; ∥a+b∥≤∥a∥+∥b∥. Ogni s. normato diventa uno s. metrico, ove si assuma come distanza di due suoi elementi a, b la norma In modo analogo sono definiti gli intorni di un sottoinsieme dello spazio. Per base di uno s. topologico S si intende una ...
Leggi Tutto
Matematica
Insieme alla retta e al piano, uno degli enti fondamentali della geometria, la cui nozione intuitiva corrisponde all’idea di una posizione sulla retta, nel piano o nello spazio (si tratta cioè [...] tipografo francese F.-A. Didot nel 18° sec.; esso equivale nel sistema metrico decimale a 0,376 mm. Il suo multiplo è la riga, uguale a che si esegue conducendo per la larghezza che richiede lo spazio del lavoro da eseguire un filo da destra a ...
Leggi Tutto
Geometria
Ryoichi Kobayashi e Luigi Ambrosio
Giovanni Bellettini
(XVI, p. 623; App. III, i, p. 724; IV, ii, p. 39; V, ii, p. 391)
Numerose voci dell'Enciclopedia Italiana trattano i vari oggetti e [...] con l'opera di B. Riemann è una generalizzazione diretta della g. intrinseca delle superfici (v. geometria: Indirizzo metrico nel caso di n dimensioni. Spazi di Riemann, XVI) ed è molto importante notare che la g. riemanniana non è una g. particolare ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] provato che su una sfera bidimensionale con un'arbitraria metrica riemanniana esiste un numero infinito di geodetiche chiuse C² per i quali |z|²1|w|²=1 (C² è quadrimensionale come spazio vettoriale su R). La velocità di fase del flusso di Hopf è un ...
Leggi Tutto
Geometria differenziale
Simon M. Salamon
SOMMARIO: 1. Introduzione: le origini. 2. Proprietà delle superfici. 3. Studio della curvatura gaussiana. 4. Dimensioni superiori. 5. Varietà e topologia. [...] delle funzioni complesse. In dimensioni superiori un problema più trattabile è quello della classificazione delle metriche di Einstein sugli spazi omogenei; attualmente, invece, l'attenzione è rivolta allo studio del caso più generale dei biquozienti ...
Leggi Tutto
metrico
mètrico agg. [dal lat. metrĭcus, gr. μετρικός, der. di μέτρον «misura; metro (del verso)»] (pl. m. -ci). – 1. a. In relazione a metro nel sign. di «misura», che concerne la misura, la misurazione: i sistemi m. e monetarî usati dagli...
metrica
mètrica s. f. [femm. sostantivato dell’agg. metrico; nel sign. 1, cfr. gr. μετρική (sottint. τέχνη «arte»)]. – 1. La tecnica della versificazione, cioè il complesso delle leggi che regolano la composizione dei versi e delle strofe;...