algebra
àlgebra [Lat. algebra, der. dell'arabo al-giabr propr. "restaurazione", e quindi "riduzione" (dapprima nel signif. medico-chirurgico, e poi in quello matematico), che compare la prima volta in [...] costituenti un'a. e definiti su determinati spazi: a. diBanach, di Hilbert, a. C∗, ecc.: v. algebre di operatori. ◆ [ALG] A. C∗ di tipo I: v. algebre di operatori: I 95 e. ◆ [ALG] A. C∗ liminare: v. algebre di operatori: I 95 f. ◆ [ALG] A. C ...
Leggi Tutto
Gruppi
GGeorge W. Mackey
di George W. Mackey
SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] come la somma della serie
Questa somma ha senso perché tutti gli operatori lineari continui formano uno spaziodiBanach con ∥ A ∥ = estremo superiore di ∥ A(f) ∥ per ∥ f ∥ = 1. Si può dimostrare che t ???14??? eiAt è una rappresentazione unitaria ...
Leggi Tutto
Meccanica e termomeccanica razionali
CClifford A. Truesdell
di Clifford A. Truesdell
SOMMARIO: 1. Concetti e metodi: a) la natura delle scienze razionali; b) la nascita, l'apogeo e il lento declino [...] i materiali semplici (v. sopra, cap. 2, È h) Coleman e Noll hanno supposto che il dominio del funzionale di risposta Gx sia un certo spaziodiBanach delle storie Ft e hanno fatto l'ipotesi che l'applicazione Gx sia continua e differenziabile n volte ...
Leggi Tutto
Variazioni, calcolo delle
Giuseppe Buttazzo
Gianni Dal Maso e Ennio De Giorgi
SOMMARIO: 1. Introduzione. 2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] diretti del calcolo delle variazioni in cui si utilizzano largamente concetti di analisi funzionale - per esempio gli spazi a infinite dimensioni di Hilbert e diBanach - e di moderna teoria della misura, che intervengono, per esempio, nella ricerca ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] pubblicato il libro diBanach, erano gli spazidi funzioni e gli spazi astratti con una struttura algebrica dispazio vettoriale lineare, ma di dimensione infinita e dotati di una struttura topologica basata sul concetto dispazio metrico nel quale ...
Leggi Tutto
Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] .
4. I metodi del calcolo delle variazioni
L'osservazione fondamentale è la seguente: se K è un insieme convesso chiuso di uno spaziodiBanach riflessivo V e se J è un funzionale convesso continuo su K tale che
J(v) → + ∞ se ∥ v ∥ → ∞, v ∈ K ...
Leggi Tutto
Geometria non commutativa
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] (1939) che l'algebra C(G) delle funzioni continue a valori complessi su uno spazio compatto G determina lo spazio, in maniera puramente algebrica, non solo completò la linea di ricerca diBanach e Stone, ma servì anche a far notare che, in linea ...
Leggi Tutto
paradosso
paradosso (dal greco pará, «oltre, contro», e dóxa, «opinione») termine applicato, nella sua accezione più ampia, a qualsiasi affermazione o ragionamento che contrasti con l’opinione comune [...] persone è 50, la probabilità è circa il 97%.
Paradossi di teoria della misura
Un esempio di paradosso di questo tipo è il paradosso diBanach-Tarski, dal nome dei due scienziati polacchi S. Banach e A. Tarski, il primo matematico, il secondo logico ...
Leggi Tutto
Storia della civiltà europea a cura di Umberto Eco (2014)
Giorgio Strano
Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook
La matematica del Novecento è stata paragonata nel 1951 da Hermann Weyl al delta del [...] nuova classe dispazi che coniuga la nozione dispazio metrico e quella dispazio vettoriale: uno spaziodiBanach è uno spazio vettoriale normato completo. Uno spaziodi Hilbert può essere definito come un caso particolare dispaziodiBanach, anche ...
Leggi Tutto
VITALI, Giuseppe
Enrico Rogora
– Nacque a Ravenna il 26 agosto 1875 da Domenico e da Zenobia Casadio.
Nel 1895 si iscrisse alla facoltà di matematica presso l’Università di Bologna dove conobbe Cesare [...] campo dell’analisi reale.
Tra questi spicca il Teorema diBanach-Vitali (Sulle funzioni continue, in Fundamenta mathematicae, VIII ambizioso programma per la costruzione di un calcolo differenziale assoluto negli spazidi Hilbert. Vitali raccolse i ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...