Wavelet
Silvia Bertoluzza
Il concetto di wavelet (ondina) fu introdotto per la prima volta dal geofisico francese J. Morlet attorno al 1975. Insieme al fisico francese A. Grossmann, Morlet mise a punto, [...] di dilatazione o di scala e caratterizzano la funzione di scala in maniera univoca. Per costruire la base di w. si introduce un sottospazio di dettagli Wj⊂Vj+1 tale che ogni elemento f di Vj+1 si possa decomporre in un unico modo come f=fj+dj ...
Leggi Tutto
TENSORIALE, ALGEBRA e ANALISI
Dionigi Galletto
Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] (emisimmetrico) con la conclusione che la totalità dei tensori simmetrici (emisimmetrici) dello stesso ordine e tipo costituisce un sottospazio vettoriale dello s. v. a cui appartengono. I tensori emisimmetrici di ordine maggiore di n risultano nulli ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] delle isometrie euclidee è un sottogruppo del gruppo delle trasformazioni proiettive, e lo spazio proiettivo un sottospazio dello spazio euclideo. Klein attribuiva molta importanza a questa gerarchia delle geometrie conosciute; la sua crescente ...
Leggi Tutto
Sistemi, scienza e ingegneria dei
Salvatore Monaco
Con il termine sistema si intende qualsiasi oggetto di studio che, pur essendo costituito da diversi elementi reciprocamente interconnessi e interagenti [...] dall’istante iniziale. Un sistema è inoltre detto lineare se W è uno spazio lineare su ℝ e per ogni t0, ∑(t0) è un sottospazio lineare di WT(t0) . Allora, per ogni w1,w2 ∈ ∑(t0) si ha
[6] αw1 + βw2 ∈ ∑(t0) per ogni α, β ∈ ℝ.
Concetto di stato ...
Leggi Tutto
potenza
potènza [Der. del lat. potentia, dall'agg. potens -entis "potente", part. pres. di posse "potere"] [LSF] (a) Generic., capacità di produrre grandi effetti. (b) Specific., l'energia che viene [...] uno spazio vettoriale: in un'algebra di Grassmann definita su uno spazio vettoriale V, la r-esima p. di V è il sottospazio dell'algebra generato dal prodotto di r elementi della base di V. ◆ [MCF] P. indotta: v. locomozione animale aerea: III 477 d ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] ϑ. Dalla (12) segue che d(dω)=0, cioè ogni forma esatta è necessariamente chiusa. Lo spazio quoziente delle r-forme chiuse modulo il sottospazio delle r-forme esatte è il gruppo di coomologia di de Rham di M in dimensione r e si indica con HrR(M). Se ...
Leggi Tutto
Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] (Ω_) compatto), 0∉f(∂Ω) e Ω⊂X aperto e limitato. L'idea consiste nell'approssimare Φ in Ω con mappe Φn a valori in sottospazi finito-dimensionali Xn di X e nel mostrare che i gradi di Brouwer dB[(I−Φn)∣Xn,Ω∩Xn], si stabilizzano per n molto grande. Il ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] forma di Chow di una varietà W di dimensione k nello spazio proiettivo di dimensione n come equazione dell'ipersuperficie dei sottospazi di dimensione n−k−1 che incontrano W.
Il secondo collegamento è nelle idee di Hodge che, studiando la formula di ...
Leggi Tutto
Convessità
Arrigo Cellina
La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] di X chiuso, convesso e non vuoto. Sia A una mappa monotona definita su K, continua nell'intersezione di K con ogni sottospazio a dimensione finita di X. Inoltre, ove K non sia limitato, si assuma che la mappa A sia coercitiva su K. Allora ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] di tutti i complessi lineari come uno spazio proiettivo P5. In tale iperspazio esteso, Klein considerò il sottospazio dei complessi lineari speciali, che si ottiene quando tutte le linee del complesso incontrano una data linea. Identificando ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
supplemento
suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...