In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] la velocità, variabile con il tempo, di un punto mobile lungo una linea,
l’i. formula
dà il cammino percorso dal punto tra gli istanti a e b. diLagrange, di Hermite, di Legendre ecc.). Le formule viste prevedono la suddivisione dell’intervallo di ...
Leggi Tutto
Chimica
Per la dinamica in chimica ➔ dinamica molecolare.
Economia
Per la dinamica in economia ➔ dinamica economica.
Fisica
Parte della meccanica che studia i movimenti dei corpi in relazione alle cause [...] altri, J.-B. D’Alembert, L. Euler, G.L. Lagrange, L. Poinsot, A.-L. Cauchy, G. Bernoulli, K. punto dello spazio delle fasi è associata una successione di simboli i1, i2 , … detta storia H(x) di x sulla partizione I1, …, Is. L’azione di S sui puntidi ...
Leggi Tutto
Parte dell’idraulica che studia i problemi di moto dei liquidi.
Leggi dell’i. per un liquido non viscoso
Si assume come ipotesi fondamentale che il liquido considerato sia privo di viscosità, cioè esente [...] dσ un elemento della parete medesima.
L’i. può essere sviluppata secondo il puntodi vista euleriano o secondo il puntodi vista lagrangiano; il puntodi vista euleriano, che è generalmente, per le applicazioni tecniche, il più conveniente, consiste ...
Leggi Tutto
Scienza che studia il moto e l’equilibrio dei corpi. È tradizionalmente divisa in tre parti: cinematica, dinamica e statica, che studiano, rispettivamente, il moto prescindendo dalle sue cause, il moto [...] fluidomeccanica, elastomeccanica ecc. La m. dei sistemi continui può essere sviluppata da due puntidi vista: cioè il puntodi vista molecolare, o lagrangiano, che considera le varie grandezze in corrispondenza alle singole particelle del sistema, e ...
Leggi Tutto
Intuizione e rappresentazione della modalità con cui i singoli eventi si susseguono e sono in rapporto l’uno con l’altro (per cui essi avvengono prima, dopo o durante altri eventi), vista o come fattore [...] generalizzate e si considera il moto descritto dalle equazioni diLagrange con le nuove condizioni iniziali:
il sistema evolverà da meridiani spaziati tra loro di 15°, cioè di un’ora, e si è posto il t., in tutti i puntidi uno stesso fuso, pari al ...
Leggi Tutto
Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] ha un elemento minimo; la sezione (A, B) è detta puntodi continuità di prima specie; esempio: A = classe dei n. razionali minori hanno per grado un numero primo p si ha il teorema diLagrange secondo il quale il n. delle soluzioni della congruenza f ...
Leggi Tutto
Economia
P. economica Il complesso degli interventi dello Stato nell’economia, realizzati spesso sulla base di un piano pluriennale (in questo senso il termine si alterna, nell’uso, con pianificazione). [...] punti P(x1, x2, …, xn) di minimo relativo della funzione f(x1, x2, …, xn) nell’insieme Rg definito dalle condizioni: g1(x1, …, xn)≥0, …, gm(x1, …, xn)≥0, x1≥0, …, xn≥0, devono verificare, insieme con le quantità l1, …, lm (moltiplicatori diLagrange ...
Leggi Tutto
Alimentazione
Insieme delle tecniche che tendono ad arrestare o rallentare i processi vitali che si svolgono in un prodotto alimentare non trattato rendendolo non commestibile. Esse permettono quindi l’impiego [...] e pertanto è funzione solo del modulo della velocità v, L=L(v). Dalle equazioni diLagrange segue immediatamente che deve essere v = costante, cioè in un riferimento inerziale il moto di un punto materiale libero è rettilineo e uniforme ( legge ...
Leggi Tutto
Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] nei quali si presentano fenomeni di singolarità, il metodo dei moltiplicatori diLagrange fornisce le seguenti condizioni necessarie perché un punto sia puntodi massimo o di minimo vincolato:
esso è un sistema di n+s equazioni nelle n+s incognite ...
Leggi Tutto
Concetto fondamentale nell’analisi matematica e nelle sue applicazioni che esprime, date due grandezze l’una funzione dell’altra (per es., in fisica, lo spazio percorso e il tempo impiegato a percorrerlo, [...] ’intervallo in cui si annulla la d. prima della f(x).
Teorema di Cauchy: esiste almeno un punto ξ di (a,b) per il quale si ha g′(ξ) [f(b)−f(a)]=f′(ξ) [g(b)−g(a)].
Teorema diLagrange: esiste almeno un punto ξ di (a,b) per il quale si ha f(b)−f(a)=(b ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...