massimo
màssimo [agg. e s.m. Der. del lat. maximus, superlativo di magnus "grande" e quindi "il più grande" e, sostantivato, "cosa la più grande possibile"] [ALG] M. comune divisore di ideali di un anello: [...] esponente. ◆ [ALG] M. comune divisore di polinomi: il polinomio di grado massimo che sia divisore comune di tutti i polinomi dati; si determina scomponendo questi ultimi in prodotti di polinomiirriducibili e considerando poi i soli fattori comuni ...
Leggi Tutto
fattore
fattóre [Der. del lat. factor "che fa", dal part. pass. factus di facere "fare"] [LSF] Generic., grandezza (a seconda dei casi adimensionata oppure dimensionata) interpretabile come una sorta [...] ecc. come prodotto di altri numeri, polinomi, ecc., che sono suoi f.; in partic., decomposizione di un numero in f. primi e di un polinomio in f. irriducibili se i detti f. sono tutti numeri primi o polinomiirriducibili. ◆ [ALG] Gruppo f.: lo stesso ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] (funzioni ellittiche).
V. algebrica
Lo studio dei polinomi in più indeterminate è alla base delle definizione di rimanenti. Si riconosce che il punto generico di una v. irriducibile è semplice (per es., per una cubica piana nodata o cuspidata ...
Leggi Tutto
razionale In matematica, numeri r. sono i numeri interi e frazionari, che esprimono il rapporto di due grandezze commensurabili. Originariamente si pensava (guidati dall’idea che ogni figura geometrica [...] Funzioni r. sono quelle che si esprimono come quoziente di due polinomi, in una o più variabili (la cui espressione cioè si ottiene r. le rette, le coniche, le curve algebriche piane di ordine n irriducibili e dotate di (n−1) (n−2)/2 punti doppi. ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] nel caso in cui a e b siano le radici di un polinomio di secondo grado a coefficienti interi primi tra loro. Gli un, per essi fungono da unità. Un numero complesso primo (oggi diremmo 'irriducibile') è un numero divisibile solo per sé stesso e per le ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] δ(M) esiste e sono uguali. Il contrario però non è sempre vero. Il teorema principale di Kronecker è: se
è un polinomio a coefficienti interi, r il numero di fattori irriducibili di F(x) in Z[x] e νp il numero di soluzioni di F(x)≡0 modulo p per un ...
Leggi Tutto
irriducibile
irriducìbile (letter. o ant. irreducìbile) agg. [comp. di in-2 e riducibile]. – 1. a. Che non si può ridurre, cioè rimpiccolire, restringere, ricondurre a una forma più semplice: il prezzo è fisso, i.; i costi di produzione sono...
fattore
fattóre s. m. [lat. factor -ōris, der. di facĕre, part. pass. factus]. – 1. letter. Chi fa, facitore, creatore: i f. dell’unità italiana, coloro che più hanno contribuito a farla; si dice in partic. di Dio (cfr. il più com. creatore):...