Termine generico con cui si indica qualsiasi porzione limitata di materia oppure la struttura fisica dell’uomo e degli animali oppure un insieme di cose o persone che formino un tutto omogeneo.
Anatomia
Il [...] campo, che si chiama ‘campo fondamentale’ di K e può presentare solo due alternative: a) esso è isomorfo al campo dei numeri razionali; b) è isomorfo al campo γp delle classi di resti, modulo un numero primo p, caratteristica del corpo. Nel secondo ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] chiuso). Il c. C̅ gode della notevole proprietà che un qualunque ampliamento algebrico di C è contenuto, a meno di isomorfismi, in C̅. Per quanto riguarda i secondi si dimostra che un ampliamento trascendente qualunque di C è un ampliamento algebrico ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] proprietà che, scegliendo opportuni valori zi∈k, si possa sempre ottenere un sottocampo di k(f1(z1),…, fr(zr)) isomorfo a K?
È interessante notare che forse questo audace interrogativo è nato da un'incomprensione dell'originale 'sogno' di Kronecker ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
La logica e i fondamenti della matematica tra Ottocento e Novecento
Mario Piazza
I fondamenti della geometria
Nella seconda metà dell’Ottocento, in tutta Europa il baricentro delle ricerche geometriche [...] della logica, e affronta la possibilità di una fondazione insiemistica della logica in base alla quale lo ‘spazio logico’ risulta isomorfo a una varietà continua di n dimensioni. A Nagy si deve inoltre il primo manuale moderno di logica per un ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] di rimpiazzamento.
Skolem si cimenta infine in indagini sui possibili modelli e propone un argomento per dimostrare che ne esistono di non isomorfi e che, quindi, la teoria non è categorica. Si chiede poi se non si possa definire un metodo per l ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] , le proprietà aritmetiche di k si riflettono in proprietà del gruppo di Galois G di K su k, che è abeliano e isomorfo a Cm. Hecke dimostrò nel 1917 che le funzioni L di Weber soddisfano un'equazione funzionale, e che sono funzioni intere nel ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] di catene finite di semplificazioni è indecidibile. Scott trova un modello del λ-calcolo che consiste in un insieme ordinato X isomorfo all'insieme delle funzioni crescenti e continue da X in X (ove la continuità è relativa a una opportuna topologia ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] e studiano gli spazi topologici K(π,n) che hanno tutti i gruppi di omotopia nulli eccetto l'n-mo, che è isomorfo al gruppo π. Questi spazi si riveleranno di importanza cruciale in topologia.
Teoria assiomatica dell'omologia e della coomologia. Samuel ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] da un elemento algebrico. Doveva contenere tutti i coniugati di tale elemento e il suo gruppo di Galois su K doveva essere isomorfo al gruppo delle classi di ideali di K; nessun ideale di K doveva essere divisibile per il quadrato di un ideale primo ...
Leggi Tutto
isomorfo
iṡomòrfo agg. [comp. di iso- e -morfo]. – 1. In genere, che ha forma uguale, o che è costituito da elementi di uguale forma. 2. In cristallochimica, di composto che presenta isomorfismo. Miscele i., quelle formate da sostanze cristalline...
isomorfico
iṡomòrfico agg. [der. di isomorfo] (pl. m. -ci). – 1. In botanica, nell’alternanza di generazione, detto delle due generazioni quando hanno aspetto e sviluppo eguale. 2. In matematica, relativo all’isomorfismo o a fenomeni di isomorfismo;...