La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] xn) tenda a 0 al crescere di m e n, converge a un limite x.
Lo spazio è separabile se è unione di un insiemenumerabile S e del suo derivato S′. Uno dei risultati significativi della tesi di Fréchet è la scoperta di una stretta connessione tra il suo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...] (ciò è in evidente contrasto con la misura di Jordan, secondo la quale un insiemenumerabile di singoli punti, ciascuno di lunghezza zero ‒ per es., l'insieme dei razionali in [0,1] ‒ ha lunghezza positiva). All'inizio Borel aveva osservato che ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] 'unione di una infinità numerabile di insieminumerabili è numerabile, che un sottoinsieme infinito di un insiemenumerabile è numerabile e che togliendo a un insieme infinito un insiemenumerabile si ottiene un insieme della stessa potenza di quello ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] dell'originario sistema di Russell e Whitehead.
Per evitare il costituirsi di insiemi 'troppo grandi', come l'insieme di tutti gli insiemi o l'insieme di tutti i numeri ordinali che ingenerano antinomie, l'idea di Zermelo è invece di sostituire ...
Leggi Tutto
La scienza presso le civilta precolombiane. La natura della conoscenza e delle pratiche scientifiche nella civilta inca
Gary Urton
Jean-François Genotte
La natura della conoscenza e delle pratiche [...] chiare attestazioni del fatto che le popolazioni andine precolombiane abbiano prodotto sofisticate manipolazioni di numeri, insiemi, figure e superfici geometriche. I tessuti precolombiani, per esempio, testimoniano ampiamente che i tessitori ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] un A che contiene 0 e che soddisfa ∀ x (x ∈A⇔{x}∈ A); prendendo sc(x)={x}, si può identificare l'insieme ℕ dei numeri naturali con il più piccolo sottoinsieme di A che contiene 0 ed è chiuso rispetto a questa operazione di successore. Più in generale ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] la divisione euclidea e le proprietà fondamentali dell'analisi combinatoria. Seguono considerazioni precise sugli insiemi infiniti, gli insieminumerabili e calcoli con cardinali infiniti; infine si studiano i limiti proiettivi e induttivi.
Il ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La teoria della misura
Maurice Sion
La teoria della misura
Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] Nel 1933 Salomon Bochner (1899-1982) iniziò lo studio di misure che assegnano a ogni insieme un vettore definito in uno spazio di Banach, anziché un numero. Tali misure erano state studiate da molto tempo in fisica, nelle equazioni differenziali e in ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di Leopoli-Varsavia
Ettore Casari
La scuola di Leopoli-Varsavia
Gli inizi
La singolare vicenda intellettuale divenuta nota come 'Scuola [...] e le definizioni che caratterizzarono addirittura un'epoca della logica del Novecento. Stabilito che l'insieme S delle proposizioni doveva essere 'al massimo numerabile', fissò che l'operazione ℂ che assegna a ogni sottoinsieme M di S il sottoinsieme ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Filosofia della matematica
Roshdi Rashed
Filosofia della matematica
Gli storici della filosofia islamica dimostrano un interesse molto [...] positiva o, più in generale, di considerare una classe di numeri irrazionali ‒ egli ritiene di trovarsi al di fuori di queste due scienze. Il termine al-ḥisāb abbraccia dunque l'insieme di tutte queste ricerche aritmetiche, che si effettuano grazie a ...
Leggi Tutto
numerabile
numeràbile agg. e s. m. [dal lat. numerabĭlis]. – Che può essere numerato, cioè distinto con numeri, oppure calcolato esattamente: ci darà la quantità esatta delle ore e minuti ..., se la frequenza fusse da noi n. (Galilei). In...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...