Probabilità
Gian-Carlo Rota e Joseph P.S. Kung
*La voce enciclopedica Probabilità è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un contributo di Marco Li Calzi.
sommario: 1. Introduzione. [...] se UT ha spettro discreto. Una trasformazione ergodica con spettro discreto è coniugata a una rotazione su un gruppo compatto abeliano. Inoltre due trasformazioni ergodiche con spettri discreti sono coniugate se, e soltanto se, gli operatori unitari ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] sorta di proposizione inversa, cioè che ogni equazione a coefficienti interi abeliana (ossia con gruppo di Galois abeliano, e dunque prodotto di gruppi ciclici) ha come radici funzioni razionali delle radici dell'unità. La dimostrazione completa fu ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] finito assegnato: esiste un corpo di numeri algebrici F, estensione di Galois di ℚ, tale che il suo gruppo di Galois sia G? Se G è abeliano la risposta è positiva come è facile provare. Shafarevich, nel 1954, ha mostrato che la risposta è ugualmente ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] e che ha molte importanti proprietà. In particolare, le proprietà aritmetiche di k si riflettono in proprietà del gruppo di Galois G di K su k, che è abeliano e isomorfo a Cm. Hecke dimostrò nel 1917 che le funzioni L di Weber soddisfano un'equazione ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] in V.
La teoria è stata sviluppata quasi esclusivamente nel caso dei gruppi riduttivi. Il morfismo π è suriettivo e ogni sua fibra contiene un trovato un controesempio a questo problema nel caso abeliano, David Saltman nel caso complesso. In questa ...
Leggi Tutto
CONFORTO, Fabio
Francesco Saverio Rossi
Nato a Trieste nel 1909 da Ruggero e Irene Vascotto, quando la città era ancora parte integrante dell'Impero austro-ungarico, visse gli anni dell'infanzia, a [...] ) vengono trattate delle trasformazioni di 1a e 2a specie birazionali. Nel caso non abeliano invece, nell'ipotesi p = 0 e π > o le trasformazioni formano un gruppo formato da infinite schiere dipendenti da parametri variabili: se δ1. δ2 = 0, esse ...
Leggi Tutto
semigruppo
semigruppo insieme A dotato di un’operazione binaria interna associativa (→ associatività); formalmente si definisce come una coppia (A, ∗), dove A è un insieme non vuoto e dove ∗: A × A → [...] associativa su A. Se l’operazione ∗ è commutativa, allora il semigruppo è detto commutativo o abeliano. Similmente al caso dei gruppi, un semigruppo si dice moltiplicativo se l’operazione è trattata formalmente come una moltiplicazione (notazione ...
Leggi Tutto
isometrie, gruppo delle
isometrie, gruppo delle struttura algebrica di gruppo che si ottiene definendo nell’insieme I delle isometrie (del piano e dello spazio) l’operazione di composizione di trasformazioni [...] . Le traslazioni, così come le rotazioni di dato centro, formano un sottogruppo abeliano (cioè commutativo).
Il gruppo delle isometrie è un gruppo non commutativo. Si osserva infatti, per esempio, che componendo nel piano una traslazione con una ...
Leggi Tutto
Biologia
Mutamento della posizione di un organismo o di una sua parte rispetto all’ambiente. La capacità di muoversi è una delle caratteristiche fondamentali degli esseri viventi, di solito la manifestazione [...] nello spazio ordinario, da n(n+1)/2 parametri nell’iperspazio di dimensione n. Questo gruppo prende il nome di gruppo dei m.: esso è un gruppo misto, non abeliano, composto di 2 schiere, quella dei m. diretti, che formano un sottogruppo, e quella dei ...
Leggi Tutto
Botanica
Sistema f. Complesso di vari tessuti, di cui fanno parte il midollo, i raggi midollari e la corteccia primaria con i vari elementi istologici (insieme dei parenchimi e dei tessuti di riempimento); [...] la somma di cammini, cioè il cammino ottenuto percorrendo l’uno dopo l’altro i due cammini addendi. È un gruppo non abeliano, la cui importanza sta nel fatto che è un invariante topologico.
Religione
La denominazione articoli f. è usata da teologi ...
Leggi Tutto
abeliano
agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...