Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] dal solo elemento D, al quale si associa, per ogni f ∈ A, l’applicazione f→df/dx. L’insieme Ω risulta dotato della struttura di gruppoabeliano e i suoi elementi, a meno di eguaglianze, sono 1, Dk, D–k (k=1, 2, …), dove all’o. Dk è associata l ...
Leggi Tutto
Sistemi dinamici
Giovanni Jona-Lasinio
Ya. G. Sinai
Origini e sviluppo, di Giovanni Jona-Lasinio
Risultati recenti, di Ya. G. Sinai
Origini e sviluppo di Giovanni Jona-Lasinio
SOMMARIO: 1. Introduzione. [...] possono essere riassunti come segue: 1) lo spettro di ciascun SD ergodico con spettro puramente puntiforme è un gruppoabeliano; 2) il valore assoluto di ciascuna autofunzione è costante quasi ovunque; 3) lo spettro costituisce un insieme completo ...
Leggi Tutto
traslazione
traslazióne [Der. del lat. translatio -onis "atto ed effetto dell'operare una traslazione", da transferre (→ traslatore)] [ALG] Trasformazione di coordinate spaziali del tipo x'=x+a, con [...] , partecipa anche la Terra. ◆ [ELT] T. vincolata: v. forme, riconoscimento delle: II 682 d. ◆ [ALG] Gruppo delle t.: l'insieme di tutte le t. nel piano o nello spazio; si tratta di un gruppoabeliano in quanto la somma di due t. è commutativa. ...
Leggi Tutto
simmetria Distribuzione ordinata delle parti di un oggetto tale che si possa individuare un elemento geometrico (un punto, una linea, una superficie) rispetto al quale a ogni punto dell’oggetto posto da [...] di simmetria, oppure, per punti dello spazio, tutti equidistanti dall’asse di simmetria. Gruppo di simmetria di una figura F è il gruppo, per solito non abeliano, costituito da tutti i movimenti, diretti o inversi, che lasciano invariata F. Per ...
Leggi Tutto
non abeliano
nón abeliano [locuz. agg.] [ALG] Campo n.: lo stesso che campo non commutativo. ◆ Gruppo n.: (a) [ALG] gruppo in cui la legge di composizione non è commutativa; (b) [MCQ] nella teoria dei [...] campi quantistici la locuz. s'intende spesso relativa al gruppo d'invarianza di gauge della teoria; operatori hermitiani n. corrispondono a grandezze fisiche che non si possono misurare simultaneamente con accuratezza arbitraria, cioè che soddisfano ...
Leggi Tutto
La seconda rivoluzione scientifica: fisica e chimica. I quanti e il mondo dell'infinitamente piccolo
Laurie M. Brown
I quanti e il mondo dell'infinitamente piccolo
Secondo P.A.M. Dirac (1902-1984) l'affermarsi [...] Modello standard
Nel 1954 Yang e Robert L. Mills (e nel 1955 Ronald Shaw in una tesi di dottorato) introdussero una teoria di gauge non abeliana. Un gruppo non abeliano è caratterizzato dal fatto che i suoi elementi non commutano, come nel caso del ...
Leggi Tutto
abeliano
agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...