Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] S è costituito dal solo elemento zero: ogni ciclo sulla sfera è omologo a zero; invece sul toro il gruppo H1(S) è un gruppoabeliano libero con due generatori, z1 e z2, che si possono assumere coincidenti con un meridiano e un parallelo, cosicché ...
Leggi Tutto
Conformità o equivalenza tra più parti, termini, elementi.
Biologia
Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] per un bordo, l’insieme delle classi di equivalenza costituisce il gruppo quoziente Hp=Zp/Bp detto p-mo gruppo di o. del complesso di catene considerato. Il gruppoabeliano Hp può non essere libero; pertanto si decompone nella somma diretta ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] di Lie semisemplici, K0C*r(G), dove C*r(G) è l'algebra C* ridotta di G, contiene il gruppoabeliano libero con un generatore per ogni rappresentazione irriducibile di serie discrete. Così, in questo caso, una determinazione esplicita della K-teoria ...
Leggi Tutto
Geometria non commutativa
Alain Connes
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] di Lie semisemplici K0C*r(G), dove C*r(G) è l'algebra C* ridotta di G, contiene il gruppoabeliano libero con un generatore per ogni rappresentazione irriducibile di serie discrete. Così, in questo caso, una determinazione esplicita della K-teoria ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] il coefficiente da C a vari fasci. Un fascio S su M assegna, per definizione, a ciascun sottoinsieme aperto U di M un gruppoabeliano o, più in generale, un modulo S(U) in modo tale che, se V è un insieme aperto più piccolo, allora esiste una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] Pontrjagin riformula i teoremi di dualità della topologia presentandoli come un caso particolare della dualità tra un gruppoabeliano discreto e il suo gruppo dei caratteri. Con ciò si unificava la teoria omologica della dualità e si apriva la strada ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] che le curve di una superficie, modulo l'omologia topologica (o, equivalentemente, l'equivalenza algebrica), formano un gruppoabeliano finitamente generato.
Dal citato lavoro del 1903 prende origine l'interesse di Severi per lo studio delle famiglie ...
Leggi Tutto
gruppi di coomologia dei fasci
Fabrizio Andreatta
Sia X uno spazio topologico. Dato una fascio F di gruppi abeliani su X, sia H0(X,F) il gruppoabeliano delle sezioni globali di F su X. Il funtore che [...] , dovuta ad Alexander Grothendieck, la coomologia dei fasci ovvia a tale carenza fornendo per via astratta funtori che associano a F gruppi Hq(X,F), con q intero non negativo, soggetti alle seguenti due richieste. La prima richiesta è che, data una ...
Leggi Tutto
In arte e architettura, persona od oggetto che l’artista ritrae o riproduce, oppure esemplare preparatorio dell’opera finale. Nel linguaggio scientifico, costruzione schematica, puramente ipotetica o realizzata [...] facilmente dimostrare che la teoria G, prima presentata, non è sintatticamente completa. Infatti, siano U(α) e U(β) due gruppi, il primo abeliano e il secondo no. Essi sono entrambi m. di G ma non elementarmente equivalenti perché la formula x+y=y+x ...
Leggi Tutto
Biologia
G. sanguigni
Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni).
G. tissutali
Insieme di individui istocompatibili, tra [...] di elementi {aα} di un g. G, dal quale G è generato, si chiama un sistema di generatori.
Caratteri di un gruppo
Dato un g. abeliano G, finito, di elementi a1, a2, ..., an, si chiama carattere di G ogni funzione ϕ(ai) a valori complessi, definita in ...
Leggi Tutto
abeliano
agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...