Architettura
Misura convenzionale che stabilisce il rapporto fra le varie parti di un edificio e una unità base di misura.
Nell’architettura dell’età classica greca e romana l’unità base della composizione [...] si indica col segno +, l’elemento identico con lo zero ecc.).
A-m. (o gruppo commutativo sopra un anello A) Gruppoabeliano al quale è stata attribuita anche una legge di composizione esterna tra i suoi elementi e gli elementi di un anello; quest ...
Leggi Tutto
Biologia
In biologia cellulare, r. endoplasmatico (o endoplasmico), sistema di cavità delimitate da membrane, presente nel citoplasma di tutte le cellule. È costituito da una membrana formata da un unico [...] . I r. modulari costituiscono una classe di r. di notevole interesse: sono, per es., modulari il r. dei sottogruppi di un gruppoabeliano, il r. degli ideali destri (o sinistri) di un anello ecc. R. completo R. nel quale ogni sottoinsieme di elementi ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] dal solo elemento D, al quale si associa, per ogni f ∈ A, l’applicazione f→df/dx. L’insieme Ω risulta dotato della struttura di gruppoabeliano e i suoi elementi, a meno di eguaglianze, sono 1, Dk, D–k (k=1, 2, …), dove all’o. Dk è associata l ...
Leggi Tutto
modulo proiettivo
Luca Tomassini
Classe di tutti i moduli su un fissato anello A con omomorfismi di moduli come morfismi (frecce) forma una categoria abeliana, usualmente indicata con i simboli A-mod [...] sono definiti due importanti funtori, comunemente indicati Hom e ⊗Α. Il primo ha valori nella categoria dei gruppi abeliani e associa alla coppia di A-moduli M e N il gruppoabeliano HomΑ(M,N). Per f:M1→M e g:N→N1, le applicazioni f′:HomΑ(M,N)→ HomΑ ...
Leggi Tutto
Pontrjagin Lev Semenovic
Pontrjagin (o Pontryagin) 〈pantriàg✄in〉 Lev Semenovič [STF] (n. Mosca 1908) Prof. di matematica nell'univ. di Mosca (1935). ◆ [ALG] Classi di P.: una delle classificazioni dei [...] v. controllo, teoria del: I 749 f. ◆ [ANM] Teorema, o principio, di dualità di P.: afferma che ogni gruppoabeliano localmente compatto è isomorfo al gruppo dei suoi caratteri: v. algebre di operatori: I 94 d. ◆ [ALG] Teorema di P. e Thom: → Whitney ...
Leggi Tutto
duale
duale [agg. e s.m. Der. del lat. dualis, da duo "due"] [LSF] Di ente che sia in relazione di dualità (←) con un altro. ◆ [ANM] D. di un gruppoabeliano: v. algebre di operatori: I 94 d. ◆ [ALG] [...] Fibrato d.: v. fibrati: II 571 a. ◆ [ALG] Rappresentazione d. di un gruppo: v. gruppi, rappresentazione dei: III 122 b. ◆ [ALG] Spazio d.: di uno spazio vettoriale V, è l'insieme dei funzionali lineari su V. ◆ [ALG] Tensore d.: v. tensore: VI 128 d. ...
Leggi Tutto
abelianoabeliano [agg. Der. del cognome di N.H. Abel] [ALG] Con il signif. di commutativo: algebra a., gruppo a. (v. gruppo: III 127 f). ◆ [ANM] Funzione a.: funzione che nasce dall'inversione di un [...] specie a seconda che presentino, rispettiv., nessuna singolarità oppure soltanto singolarità polari, oppure singolarità logaritmiche: v. Riemann, superfici di: V 5 e. ◆ [ANM] Teoremi a.: lo stesso che teoremi di Abel: v. analisi armonica: I 126 e. ...
Leggi Tutto
Biologia
G. sanguigni
Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni).
G. tissutali
Insieme di individui istocompatibili, tra [...] di elementi {aα} di un g. G, dal quale G è generato, si chiama un sistema di generatori.
Caratteri di un gruppo
Dato un g. abeliano G, finito, di elementi a1, a2, ..., an, si chiama carattere di G ogni funzione ϕ(ai) a valori complessi, definita in ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] sorta di proposizione inversa, cioè che ogni equazione a coefficienti interi abeliana (ossia con gruppo di Galois abeliano, e dunque prodotto di gruppi ciclici) ha come radici funzioni razionali delle radici dell'unità. La dimostrazione completa fu ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] e che ha molte importanti proprietà. In particolare, le proprietà aritmetiche di k si riflettono in proprietà del gruppo di Galois G di K su k, che è abeliano e isomorfo a Cm. Hecke dimostrò nel 1917 che le funzioni L di Weber soddisfano un'equazione ...
Leggi Tutto
abeliano
agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...