Matematico norvegese, nato a Findö il 5 agosto 1802, morto a Froland il 6 aprile 1829. Durante la breve vita, travagliata della povertà e dalla malferma salute, poté compiere opere mirabili che gli assicurarono [...] in particolare, gl'integrali ellittici, ove la irrazionalità dipende dalla radice quadrata diunpolinomiodi terzo o quarto grado nella variabile. Per questi Eulero aveva stabilito un teorema di addizione, in virtù del quale la somma dei valori, che ...
Leggi Tutto
Ruffini Paolo
Ruffini Paolo [STF] (Valentano, Viterbo, 1765 - Modena 1822) Prof. di matematica nell'univ. di Modena (1797). ◆ [ALG] Regola di R.: regola, semplice da usare ma macchinosa da spiegare (oggi [...] la divisione diunpolinomio qualunque in una variabile x per il binomio x-a, con a costante (x sempre diverso da a). ◆ [ALG] Teorema di R.-Abel: l'equazione algebrica generale è risolubile per radicali soltanto se è digrado non maggiore di 4, come ...
Leggi Tutto
geometria algebrica
geometria algebrica variante moderna e più astratta della geometria analitica; dato il peso prevalente assegnato alle strutture algebriche (quali, in particolare, anelli, campi e [...] le cui coordinate sono soluzione diun sistema di due equazioni indipendenti:
in cui p1 e p2 sono due polinomi a coefficienti reali; tale è per esempio una retta nello spazio se p1 e p2 sono polinomidi primo grado che rappresentano due piani non ...
Leggi Tutto
discriminante
discriminante [Der. del part. pres. discriminans -antis di discriminare "distinguere, fare una differenza", da discrimen "separazione"] [ALG] D. diunpolinomio (o diun'equazione algebrica): [...] (dell'equazione), il cui annullarsi è condizione necessaria e sufficiente perché il polinomio (l'equazione) abbia uno zero (una radice) almeno doppia; per es., nel caso dell'equazione di 2° grado x2+px+q=0, il d. vale Δ=p2-4q, all'annullarsi ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] : a) ogni numero positivo ha una radice quadrata; b) ogni polinomio in una variabile e digrado n ha una radice (detta anche uno ‛zero' del polinomio), dove n è un intero dispari. Sia ora R′ un altro corpo ordinato che soddisfi a) e b) (per es ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante
Roshdi Rashed
L'algebra e il suo ruolo unificante
La seconda metà del VII sec. vede il costituirsi [...] il massimo diunpolinomiodi terzo grado per mezzo dell'equazione derivata. Nel corso della risoluzione numerica al-Ṭūsī non applica soltanto algoritmi dove si incontra di nuovo la nozione di derivata diunpolinomio, ma cerca di giustificare questi ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo diun settore della scienza o dell'arte si accordano raramente con la suddivisione [...] an−bn)/(a−b) e vn=an+bn, nel caso in cui a e b siano le radici diunpolinomiodi secondo grado a coefficienti interi primi tra loro. Gli un, per n dispari, dividono l'espressione x2−aby2; Lucas ne dedusse la legge secondo la quale certi numeri primi ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] , una curva algebrica piana C non è altro che l'insieme degli zeri diunpolinomio P(x,y) di due variabili reali x e y:
[1] C={(x,y)∈ℝ2:P(x,y)=0}.
Si dice che C ha grado d, se d è il grado del polinomio P(x,y). Una retta è l'insieme degli zeri ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] migliorare e semplificare la compilazione delle tavole portarono anche a importanti progressi sul piano teorico. Se per valori di x equidistanti, x0, x1,…, xn, e unpolinomio f digrado m si formano le differenze f(xi+1)−f(xi), quindi le differenze ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] Δm−1fi, e nell'utilizzare la 'formula d'interpolazione progressiva di Gregory-Newton':
Troncando questa serie all'ordine n si ottiene un'approssimazione della funzione f mediante unpolinomio Pn digrado al più n, che coincide con f negli n+1 punti ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
grado1
grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....