wronskiano
wronskiano 〈vronskiano〉 [agg. Der. del cognome di J.M. Wronski-Hoene 〈vrònski hö´öne〉, matematico polacco (Poznam 1778 - Neuilly 1853)] [ANM] Per n funzioni di una variabile x, è il determinante della matrice quadrata n╳n avente le varie righe costituite dalle n funzioni e dalle successive derivate, fino all'ordine n-1. L'utilità del w. si manifesta nella teoria delle equazioni differenziali omogenee di ordine n; in effetti, se f₁, ..., fn sono integrali particolari di una tale equazione, l'integrale generale è espresso da una combinazione lineare di f₁, ..., fn purché tali funzioni siano linearmente indipendenti, e quindi il loro w. non sia nullo.