L'ultimo teoremadi Fermat
L’ultimo teoremadi Fermat
Si chiamano pitagoriche quelle terne (x, y, z) di numeri naturali non nulli che soddisfano l’uguaglianza x 2 + y 2 = z 2, interpretabile geometricamente [...] n primo.
Sempre con il metodo della discesa infinita, nel 1753 Eulero ha provato che non esistono soluzioni intere positive dell’equazione x da S. Germain, che nel 1823 aveva dimostrato il teoremadi Fermat per tutti i numeri primi n che non dividono ...
Leggi Tutto
BURGATTI, Pietro
Enzo Pozzato
Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] ricordare l'estensione al caso in cui esistano forze di un teoremadi Staeckel (Su un teoremadi meccanica, in Rend. del Circolo matem. di Palermo, IX [1895], pp. 125-135); l'esposizione di una teoria generale dei sistemi articolati con l'ideazione ...
Leggi Tutto
SIACCI, Francesco Angiolo Vincenzo
Paolo Bagnoli
– Nacque a Roma il 20 aprile 1839 da Matteo – di famiglia corsa e militare del primo Impero – e da Beatrice Badaloni.
Perduto il padre in tenera età, [...] suoi studi di analisi e di meccanica hanno particolare rilevanza quelli riguardanti il moto di un giroscopio nel caso diEulero (1879), , di geometria analitica. Di grande importanza fu considerato lo studio nel quale espose il teorema fondamentale ...
Leggi Tutto
Le meraviglie del p
Angelo Guerraggio
Le meraviglie del π
Il numero indicato con il simbolo π (pi greco) è forse il numero più famoso nella storia della matematica. È sicuramente l’unico numero che [...] cerchio considerato (dal teoremadi Talete segue che due poligoni regolari, con lo stesso numero di lati, inscritti in tra una circonferenza e il suo diametro e, nel 1737, Eulero la impone con la sua autorevolezza scientifica come simbolo numerico che ...
Leggi Tutto
MORERA, Giacinto
Clara Silvia Roero
MORERA, Giacinto. – Nacque a Novara il 18 luglio 1856 da Giacomo e da Vittoria Unico, in una famiglia di ricchi commercianti.
Iscritto nel 1875 alla R. Scuola d’applicazione [...] nella tesi di laurea su quell’importante problema di meccanica razionale, già affrontato da Isaac Newton, Eulero, Joseph- è ampiamente riportata nei trattati con il nome di «teoremadi Morera ». Nell’analizzare la questione delle corde vibranti ...
Leggi Tutto
EINAUDI, Renato
Francesco Lerda
Nacque a Torino il 4 luglio 1909 da Costanzo, medico, fratello di Luigi Einaudi. La madre, Bianca Colla, era insegnante di storia e filosofia nelle scuole secondarie [...] variazionali diEulero alle equazioni canoniche di Hamilton (Sopra le relazioni che intercedono tra le equazioni variazionali diEulerodi Torino, LXXI [1935-36], pp. 443-51), e si interessò anche di teoria dell'elasticità, dimostrando il teoremadi ...
Leggi Tutto
integrale
Strumento cardine dell’analisi matematica, della teoria delle probabilità (➔) e dei processi aleatori (➔ processo aleatorio), con rilevanti applicazioni alla teoria delle decisioni nella finanza.
Integrale [...] variabile, la trasformata diEulero-Fourier è detta funzione caratteristica della variabile aleatoria X avente per funzione di ripartizione la G. Il collegamento fra funzione caratteristica e momenti è riassunto dal seguente teorema: se esiste il ...
Leggi Tutto
neoclassica, economia
Ester Faia
Espressione usata per indicare l’insieme delle teorie economiche che ha l’obbiettivo di studiare la determinazione di prezzi e quantità attraverso un approccio di equilibrio [...] assunzioni, è equivalente alla minimizzazione dei costi, che a sua volta dà origine, tramite la legge diEulero (➔ Eulero, teoremadi), alla relazione tra la retribuzione dei fattori (lavoro e capitale) e la produttività;
• le scelte ottimizzanti ...
Leggi Tutto
poliedro
poliedro solido delimitato da un numero finito di poligoni in modo che ogni lato di ciascun poligono sia esattamente comune a due poligoni. I poligoni, i loro lati e i loro vertici sono detti, [...] a una sfera è detto poliedro semplice. Per i poliedri semplici vale la relazione diEulero ƒ + v − s = 2, nella quale ƒ è il numero delle sono necessariamente equiscomponibili (→ Dehn, teoremadi). Si dice sviluppo di un poliedro sul piano ogni figura ...
Leggi Tutto
trasformata integrale
trasformata integrale tecnica di soluzione per equazioni differenziali lineari, sovente alle derivate parziali; si basa su un cambiamento di incognita dato da un integrale definito [...] di → convoluzione, o generalizzazioni del teoremadi Plancherel (→ Fourier, trasformazione di). di Mellin
utile per lo studio di equazioni che si riducono all’equazione di → Eulero, e in particolare per l’equazione di → Laplace in domini a forma di ...
Leggi Tutto