semigruppo In matematica, insieme in cui è definita un’operazione (o legge di composizione interna) binaria associativa per la quale valgano le due regole di semplificazione a sinistra e a destra, tale [...] ’equazione per la quale il problema diCauchy sia ben posto, cioè un’equazione differenziale ordinaria della forma y′(x)=F(x,y), con dato iniziale y(0)=y0, avente una soluzione unica e la proprietà seguente: una successionedi dati iniziali y0,n che ...
Leggi Tutto
MATEMATICA
Federico Enriques
Matematica, o matematiche (gr. τὰ μαϑηματικά da μάϑημα "insegnamento") significa originariamente "disciplina" o "scienza razionale". Questo significato conferirono alla [...] attraverso una successionedi trattati di cui ci resta soltanto il nome, esce fuori la grande opera di esposizione e sec. XIX da A.-L. Cauchy, era passato poi in Germania nelle scuole di B. Riemann e di C. Weierstrass, e che la geometria ...
Leggi Tutto
I m. c. permettono di risolvere con calcolatori elettronici, all'interno delle scienze applicate, i problemi complessi che sono formulabili tramite il linguaggio della matematica. Tali problemi raramente [...] di approssimazione per derivate di ordine superiore. Questo processo, di tipo locale, è alla base dell'approssimazione alle differenze finite di problemi diCauchy la successionedi numeri T e cn e di ottenere f(t) a partire da essi. Al variare di n, ...
Leggi Tutto
Algebra moderna. - L'"algebra moderna", che meglio si potrebbe chiamare "algebra astratta" o "algebra generale", si è sviluppata soprattutto negli ultimi venticinque anni dal connubio dell'algebra classica [...] il numero e-∣b-a∣p), e permette di introdurre il concetto di limite di una successione; in generale U non è completo rispetto a tale topologia, ossia esistono successioni che soddisfano al criterio diCauchy, ma non hanno un limite; aggiungendo ad U ...
Leggi Tutto
. La teoria dei corpi (astratti) costituisce uno dei capitoli più profondamente studiati dell'algebra moderna (v. in questa App.); essa ha avuto origine da una celebre memoria di E. Steinitz del 1910, [...] sempre ampliare in un corpo "completo" K*, nel quale tutte le successioni soddisfacenti alla condizione diCauchy convergono verso un elemento di K*. Naturalmente la struttura di K* non dipende soltanto da K ma anche dalla valutazione, considerata ...
Leggi Tutto
PRODOTTI INFINITI
Tullio Viola
Data una successione d'infiniti numeri, reali o complessi,
formiamo la nuova successione
con P1 = a1, P2 = a1 a2, ..., Pn = Pn-1 an = a1 a2 ... an-1 an, ... Per evitare [...] se, non essendo am+r = 0 per alcun r ≥ 1, la successionedi numeri
tende, per r → ∞, a un numero determinato, finito e ≠ 0 funzione F(x) definita in tutto E.
La condizione di convergenza diCauchy (coi significati di ε e ν dati al n. 1.I) si scrive ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali
Roshdi Rashed
Gli archimedei e i problemi infinitesimali
La storia della geometria infinitesimale, [...] tale che
,
dove (uk)1≤k≤n, k=1, 2,…, n, è la successione dei numeri dispari a partire da 1; (b) esiste una successionedi segmenti (Hj)1≤j≤n, j=1, 2,…, n, con Hn=H e tale di Ibn al-Hayṯam equivale pertanto a quello di un integrale diCauchy-Riemann ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] steepest descent, già utilizzato da Cauchy nel 1847. Solo nel 1971, grazie a un lavoro di John Reid, il metodo del nel 1935 da P. Erdős e P. Turán: se una successionedi interi non contiene tre elementi in progressione aritmetica, ha densità ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] definire un numero reale α come una successionedi numeri razionali α={a0, a1, a2, ...} che soddisfi la condizione diCauchy. Si dice che α è uguale a un'altra successionedi numeri razionali di questo tipo, β={b0, b1, b2, ...}, se la differenza tra ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] i prodotti di permutazioni (ottenuti applicando in successione due permutazioni) e osserva che il risultato dipende dall'ordine di applicazione: in generale, se A e B sono permutazioni, AB≠BA. Cauchy denota i prodotti della permutazione di A con ...
Leggi Tutto