spazio normato
Arrigo Cellina
Uno spaziolineare X su cui sia definita una funzione a valori reali, ∥∙∥, detta norma, con le seguenti proprietà: (a) ∥x∥≥0 e ∥x∥=0 se e solo se x=0; (b) per ogni reale [...] (c) viene detta disuguaglianza triangolare. Si noti che la proprietà (b) implica la simmetria della norma, cioè che ∥x∥=∥−x∥. La norma su uno spaziolineare ha le stesse proprietà del valore assoluto di un numero sui numeri reali.
→ Convessità ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...]
V. algebrica irriducibile, che si possa porre in corrispondenza birazionale senza eccezioni con uno spazio proiettivo della stessa dimensione. Per es. una conica è una v. lineare di dimensione 1.
V. prodotto
In generale, date due v. V e V′, si ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] su L compatto a valori su K con norma ∥f∥ = sup {∣ (f (t)∣ : t ∈ L)} - è uno spazio normato; e se (X, Σ, μ) è uno spazio di misura, lo spaziolineare di tutte le (ovvero, classi di equivalenza di) funzioni X → K p-integrabili (1 ≤ p 〈 + ∞), con la ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...]
Di fatto questa è una pseudonorma, in quanto ∥f∥=0 implica soltanto che f=0 q. o.
Teorema di Riesz-Fischer: lo spaziolineare normato Lp è completo.
Questo è proprio il teorema che invano i matematici del XIX secolo si affannarono a ricercare. La ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] x),
dove x1 e x2 sono punti qualsiasi in X e c è uno scalare (i punti x sono a volte chiamati vettori). Lo spaziolineare può essere reale o complesso, a seconda che gli scalari siano numeri reali o complessi. La continuità di A in un punto qualsiasi ...
Leggi Tutto
operatori lineari
Luca Tomassini
Un’applicazione A:E→F di uno spaziolineare E in uno spaziolineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] >0 tale che ∣∣x1−x2∣∣〈δ implica ∣∣Ax1−Ax2∣∣〈ε. In questo caso la continuità è equivalente alla limitatezza: un operatore lineare tra spazi di Banach E e F è continuo se e solo se
Il numero reale cA definisce una norma dell’operatore A; dotato di ...
Leggi Tutto
operatore di proiezione
Luca Tomassini
Sia ℋ uno spazio vettoriale e P un’applicazione lineare (operatore) di ℋ in sé. Se P=P2 allora P è detto operatore di proiezione. Di particolare importanza è il [...] indotta dal prodotto scalare. Si ha inoltre (I−P)2=I−2P+P2=I−P, così che anche I−P è un proiettore (evidentemente ortogonale). Lo spaziolineare XI−P={x∈ℋ tali che (I−P)x=x} coincide con il complemento ortogonale di XP in ℋ: se x∈XI−P e y∈XP allora ...
Leggi Tutto
applicazione
applicazióne [Der. del lat. applicatio -onis "atto ed effetto dell'applicare", dal part. pass. applicatus di applicare: (→ applicabile)] [ALG] Si dice che f è un'a. di un insieme P in un [...] ALG] A. biiettiva: v. sopra. ◆ [ALG] A. bilineare: è l'a. f(a,b) definita su due spazi lineari M e N e a valori in un terzo spaziolineare L, che sia lineare sia rispetto ad a∈M che a b∈N. ◆ [ALG] A. completamente positiva: v. algebre di operatori: I ...
Leggi Tutto
dominio
domìnio [Der. del lat. dominium, da dominus "padrone"] [LSF] (a) L'esercitare una determinante influenza. (b) Una definita regione dello spazio in cui si manifesta un determinato fenomeno. (c) [...] signif. concreto, la regione e l'intervallo di tempo in cui si svolge il fenomeno. ◆ [ANM] D. di uno spaziolineare: v. potenziale, teoria del: IV 568 e. ◆ [FSD] D. ferroelettrico: regione di un materiale ferroelettrico (dimensioni lineari da qualche ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
lineare1
lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...