Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] .
4. I metodi del calcolo delle variazioni
L'osservazione fondamentale è la seguente: se K è un insieme convesso chiuso di uno spaziodiBanach riflessivo V e se J è un funzionale convesso continuo su K tale che
J(v) → + ∞ se ∥ v ∥ → ∞, v ∈ K ...
Leggi Tutto
Geometria non commutativa
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] (1939) che l'algebra C(G) delle funzioni continue a valori complessi su uno spazio compatto G determina lo spazio, in maniera puramente algebrica, non solo completò la linea di ricerca diBanach e Stone, ma servì anche a far notare che, in linea ...
Leggi Tutto
operatori compatti
Luca Tomassini
Operatori lineari su uno spaziodi Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] degli operatori. Notiamo che tali definizioni hanno senso anche nel caso di operatori su uno spaziodiBanach (normato e completo) E. Ogni operatore compatto hermitiano su uno spaziodi Hilbert ℋ è diagonalizzabile, nel senso che esistono dei numeri ...
Leggi Tutto
norma
Luca Tomassini
Sia X uno spazio vettoriale. Un’applicazione ∣∣∙∣∣:X→ℝ si dice una norma se verifica i seguenti assiomi: (a) ∣∣x∣∣≥0, per ogni x∈X; ∣∣x∣∣=0 se e soltanto se x=0; (b) ∣∣λx∣∣=∣λ∣·∣∣x∣∣, [...] dice spaziodiBanach. Non è affatto necessario che lo spazio normato (X,∣∣∙∣∣) sia uno spazio vettoriale a dimensione finita. Al contrario, la nozione astratta di norma fu introdotta da Stefan Banach proprio al fine di studiare le proprietà dispazi ...
Leggi Tutto
generatore di un semigruppo
Luca Tomassini
Siano X uno spaziodiBanach con norma ∣∣∙∣∣ e B(X) l’insieme degli operatori continui su di esso. Si dice semigruppo di operatori {T(t)∣t≥0} una famiglia [...] [2] è soddisfatta se vale la condizione di Hille-Yosida: ∣∣R(λ,A)∣∣≤M(λ−ω)−1. Il teorema di Hille-Yosida può essere generalizzato da un lato al caso dispazi vettoriali topologici e dall’altro a quello di operatori non lineari.
→ Equazioni funzionali ...
Leggi Tutto
autoaggiunto
autoaggiunto [agg. Comp. di auto- e aggiunto] [ANM] Di operatore lineare che è identico al suo operatore aggiunto (anche come s.m.); il termine è sinon. di hermitiano (←) per operatori definiti [...] è se lo spazio è infinito-dimensionale; precis., dato uno spaziodi Hilbert H, l'a. è un operatore lineare A per cui è (a, Ab)=(Aa, b) con a∈H, b∈H. ◆ [ALG] Elemento a., o hermitiano, di un'algebra diBanach involutiva: v. algebre di operatori: I 93 ...
Leggi Tutto
FUNZIONE (XVI, p. 185)
Luigi AMERIO
Funzioni di più variabili complesse. - La teoria delle f. di più variabili complesse ha ricevuto negli ultimi decennî sviluppi notevolissimi, che ne hanno permesso [...] la teoria e le applicazioni.
Sia y= f(t) una funzione continua in J, a valori in uno spaziodiBanach B, e sia {hn} una arbitraria successione di numeri reali. Il Bochner ha dimostrato che condizione necessaria e sufficiente perché f(t) sia q. p. è ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica
Paolo Zellini
L'analisi numerica
L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] errore al passo k è dato da ∥xk−α∥≤≲λk/≲1−λ))∥x0−Gx0∥.
Il teorema di contrazione vale in un qualsiasi spaziodiBanach (metrico e completo) e può quindi essere usato in una varietà di casi che comprende, oltre a singole equazioni non lineari, sistemi ...
Leggi Tutto
algebre di von Neumann
Luca Tomassini
Un’algebra di von Neumann C è una sotto-algebra involutiva dell’algebra B(ℋ) degli operatori lineari limitati (ovvero continui) su uno spaziodi Hilbert ℋ (con [...] più astratta, dovuta a Jacques Dixmier e Shoikiro Sakai: un’algebra di von Neumann è una C*-algebra che, come spazio normato, è il duale di uno spaziodiBanach. Le algebre di von Neumann, proprio come le C*-algebre, possono essere viste come ...
Leggi Tutto
C*-algebre
Luca Tomassini
Un’algebra normata (o algebra diBanach A) è un’algebra sul corpo dei numeri complessi ℂ dotata di una norma ∣∣∙∣∣ che soddisfa la relazione ∣∣ab∣∣≤∣∣a∣∣∙∣∣b∣∣, dove a e b [...] algebre sono: (a) l’algebra C0(X) delle funzioni continue su uno spazio compatto X; (b) l’algebra B(ℋ) degli operatori lineari continui su uno spaziodi Hilbert ℋ o qualunque sua sottoalgebra chiusa nella topologia indotta da B(ℋ). In un certo senso ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...