La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] nell'articolo Formes bilinéaires sur les ensembles convexes la sua famosa diseguaglianza variazionale, dimostrando che ‒ dato uno spaziodiHilbert reale V e una forma bilineare continua su di esso a(u,v), tale che per un dato α>0 e per ogni v∈V ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] diHilbert. Grazie ai contributi di A.M. Gleason, di D. Montgomery e di L. Zippin viene risolta una parte del V problema diHilbert coerente F su uno spaziodi Stein X si ha: (A) in ogni x∈X, la spiga Fx è generata dalle sezioni globali di F; (B) Hq ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Fisica e filosofia della scienza all'alba del XX secolo
Don Howard
Fisica e filosofia della scienza all'alba del XX secolo
Simbiosi disciplinare
La [...] spazidi curvatura costante. La scelta di una specifica geometria metrica è frutto di una convenzione, benché per ragioni didi Einstein, fu Hermann Weyl (1885-1955). Profondamente influenzato dall'assiomatica diHilbert e dalla fenomenologia di ...
Leggi Tutto
matrice
matrice [Der. del lat. matrix -icis "utero, madre"] [LSF] Raro nel signif. di cosa da cui se ne trae un'altra, indica in genere, concret., la struttura principale di un corpo, nella quale eventualmente [...] es., le m. di ordine infinito introdotte da D. Hilbert nella teoria delle equazioni di una applicazione lineare tra spazi vettoriali e la risoluzione di un sistema di equazioni differenziali lineari. Sono perciò importanti i metodi che consentono di ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] -1895) adottò lo stesso approccio nello studio dello spazio a 5 dimensioni delle coniche del piano. I geometri avevano da tempo compreso che lo spaziodi tutte le curve piane di grado n forma una varietà di dimensione (n+3)n/2 ma soltanto verso il ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...