Riemann Bernhard
Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] superfici di: V 4 c. ◆ [ALG] Teorema di R.-Lebesgue: v. trasformazione integrale: VI 299 c. ◆ [ALG] Teorema di R.-Roch: v. superfici di Riemann: V 5 c. ◆ [MCF] Variabili di R.: v. onde nei gas: IV 289 c. ◆ [MCC] Varietà di R.: v. varietà riemanniane. ...
Leggi Tutto
ipotesi di Riemann
Matteo Longo
Congettura sulla distribuzione degli zeri nella funzione zeta di Riemann. La funzione zeta di Riemann ζ(s) è la serie L di Dirichlet associata al carattere di Dirichlet [...] il fattoriale di n, con la convenzione che 0! valga 1. Come tutte le serie L di Dirichlet, anche la funzione zeta di Riemann converge assolutamente nel semipiano {s∈ℂ tali che R(s)>1} formato dai numeri complessi s con parte reale ✄(s) maggiore di ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] in cui la funzione G(x,y) è della forma y2−p(x), con p(x) polinomio in x. In seguito, nel 1857, Riemann utilizzò la sua teoria delle funzioni di variabili complesse per generalizzare la teoria di Jacobi delle 'funzioni teta' al caso di più variabili ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] il libro di Durège per una prima introduzione, e con maggior calore l'Abriss di Thomae del 1890 per l'approccio di Cauchy-Riemann e il libro del 1888 di Thomae per l'approccio di Weierstrass. Venivano anche elogiati il Traité di Jordan e quello di ...
Leggi Tutto
monogeneita
monogeneità [Der. di monogeno] [ANM] Condizioni di m.: lo stesso che condizioni di olomorfia di Cauchy-Riemann, che devono essere soddisfatte affinché una funzione sia analitica: la funzione [...] complessa f(z)=u(x, y)+iv(x, y) della variabile complessa z=x+iy è monogena od olomorfa o analitica in un dominio A se è derivabile in ogni punto di A; ciò si verifica se e solo se sono soddisfatte le ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] ha un numero finito di discontinuità. Tuttavia, se
allora g=χS[q. o.], e l'argomentazione seguente mostra che g non è integrabile secondo Riemann. Sia Z l'insieme di misura zero su cui g≠χS e sia T=([0, 1]−S). Essendo
allora
Sia x∈T; risulta
g ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] deciso raffinamento di concetti e di metodi per essere affrontate con successo.
Tra Gottinga e Berlino
Nel 1854 Georg Friedrich Bernhard Riemann (1826-1866), che aveva seguito i corsi di Dirichlet a Berlino e si era laureato a Gottinga con una tesi ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] c di Selberg non è inferiore a 1/3 (Levinson, 1974). Si può dimostrare che l'uguaglianza N0(T)=N(T) è equivalente all'ipotesi di Riemann;
5) in quasi ogni intervallo della retta critica Re(s)=1/2 della forma (t; t+h), con h=Φ(t)/log∣t∣, Φ(t)→+∞ per ...
Leggi Tutto
automorfo
automòrfo [agg. Comp. di auto- e -morfo] [ALG] Qualifica di una proprietà associata al gruppo degli automorfismi di un insieme algebrico qualunque (gruppo, anello, ecc.). ◆ [ALG] Forma a.: [...] v. Riemann, superfici di: V 6 b. ◆ [ANM] Funzione a.: funzione analitica, di un qualunque numero di variabili, che si conserva inalterata quando si esegua sulle variabili una qualunque trasformazione appartenente a un determinato gruppo, in genere ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] a coefficenti razionali zn−11s1zn−21…1sn−150 e z5u−15ps. Gli zeri r di Z(s) sono dati da pr5bn, per n51,…,n21, ossia:
L'ipotesi di Riemann per K(√D), cioè Re(ρ) uguale a 1/2, è equivalente alla relazione log ∣βν∣=1/2 log p, o anche ∣βν∣=√p, per ν=1 ...
Leggi Tutto
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...