Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] , non solo i minimi ma tutti i punti critici di un funzionale sono soluzioni dell'equazione di Euler-Lagrange e in molti casi può accadere che le soluzioni non banali di tale equazione siano invece dei puntidi sella. La loro determinazione è l ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] negative).
Per i teoremi diLagrange dei quattro quadrati e di Legendre dei tre quadrati, il minimo s5s(e) per l'esponente e52 è s5s(2)54. Waring non riuscì a dimostrare il suo teorema. David Hilbert (1862-1943) dimostrò nel 1909 il punto 3 e la sua ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] a vapore, dimostrò che l'interpolazione diLagrange nell'intervallo [−1,1] è ottimale nel senso dell'approssimazione uniforme quando gli n puntidi interpolazione sono le radici del polinomio di Chebyshev di grado n, definito dalla:
Le ricerche ...
Leggi Tutto
L'Ottocento: matematica. Calcolo delle variazioni
Craig Fraser
Calcolo delle variazioni
Il problema di Euler
Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] , inoltre, il trattamento delle condizioni che la curva soluzione deve soddisfare nei punti estremi a e b. Euler adottò immediatamente il metodo diLagrange e introdusse il termine 'calcolo delle variazioni' per indicare la nuova disciplina basata ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali ordinarie
Jeremy Gray
Equazioni differenziali ordinarie
Variabili reali
Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] Lagrange avevano studiato i sistemi di equazioni differenziali nel caso particolare di coefficienti aij costanti, nella speranza di l'opportunità di spiegare, tra le altre cose, le relazioni tra le 24 soluzioni di Kummer dal puntodi vista complesso. ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie
Jean Mawhin
Equazioni differenziali ordinarie
Accanto a sostanziali progressi nella teoria delle equazioni [...] dei puntidi sella aumentato di 2(p−1), dove p è il genere di ∑. Si tratta del teorema di Poincaré-Hopf per una superficie di genere di stabilità diLagrange-Dirichlet per un sistema meccanico conservativo e la nozione di varietà priva di contatto di ...
Leggi Tutto
Equazioni funzionali
Jacques-Louis Lions
La teoria delle equazioni funzionali si è sviluppata a stretto contatto con i problemi via via sorti nelle varie scienze, a partire dalla meccanica, e dalla [...] il caso quadratico porta a un'equazione di Euler-Lagrange lineare).
La fisica utilizza sia le equazioni A(u)=f dove A è un operatore multivoco. A(u) non è più un puntodi uno spazio funzionale F, ma un suo sottoinsieme; in tal caso, si cerca u tale ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni
Craig Fraser
Mario Miranda
Calcolo delle variazioni
Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] problemi dello stesso genere; per esempio quello di determinare la forma di una catena appesa di data lunghezza nella quale il baricentro si trovi nel punto più basso possibile. Euler e Lagrange studiarono problemi nei quali era presente un vincolo ...
Leggi Tutto
potenziale
potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] definizione, in un dato punto, l'integrale di linea del vettore del campo dal puntodi riferimento A al punto P nei campi newtoniani e del 18° sec. e per gran parte del 19° sec., da G.L. Lagrange a P.S. Laplace, S.-D. Poisson, G. Green, K.F. Gauss ...
Leggi Tutto
L'Eta dei Lumi: matematica. Il calcolo delle variazioni
Ivor Grattan-Guinness
Il calcolo delle variazioni
Il calcolo in una e più variabili
Una volta sviluppata la teoria della differenziazione e integrazione [...] λ divennero noti come 'moltiplicatori diLagrange'. Il suo approccio alla meccanica rappresentava un'alternativa formidabile alla tradizione newtoniana e a quelle basate sull'energia, sebbene i suoi puntidi forza fossero soprattutto le situazioni ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...