La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] che ha per centro una data varietà complessa compatta M e ogni altra deformazione di M si ottiene da questa per pull-back.
La mappa a ferro di cavallo di Smale. S. Smale presenta il celebre esempio della ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] con il metodo di Goursat. Segue la formula integrale di Cauchy, servendosi della quale si dimostra che una funzione olomorfa è infinitamente differenziabile e ammette un'espansione in serie di Taylor; il principio del massimo modulo è utilizzato per ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] delle funzioni complesse. In effetti, una rappresentazione conforme di una superficie è necessariamente espressa da una funzione olomorfa. Vi fu anche un notevole interesse nello studio delle applicazioni di una superficie in un'altra che trasformano ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] della funzione generatrice di Euler P(x) della funzione di partizione p(n) data dalla [6]. P(x) è una funzione olomorfa per ∣x∣⟨1, connessa alla funzione modulare η di Dedekind. La p(n) si può rappresentare mediante l'integrale di Cauchy:
dove ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] Ludwig Siegel pubblica un risultato sulla linearizzazione dei sistemi dinamici, generalizzando un precedente teorema di Henri Poincaré: data una mappa olomorfa in un intorno di 0, f(z)=λz+∑nfnzn, (n≥2), in cui ∣λ∣≠1 (condizione di Poincaré) oppure λ ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] e Jacobi riuscì ad approfondirla pienamente. Nel caso più semplice si assume che negli integrali [11] compaiano integrande ovunque olomorfe. Esistono p integrali linearmente indipendenti di questo tipo:
[12] ∫Fj(x,y)dx, (j=1,2,...,p).
Per ognuno ...
Leggi Tutto
olomorfo
olomòrfo agg. [comp. di olo- e -morfo]. – In matematica, sinon. di analitico, usato quando si considerino funzioni di una o più variabili complesse.
olomorfosi
olomorfòṡi (alla greca olomòrfoṡi) s. f. [comp. di olo- e -morfosi]. – In biologia, processo rigenerativo del tipo dell’omomorfosi, in cui la parte asportata si rigenera completamente, con la stessa struttura e le stesse dimensioni...