GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] che dim Y + dim Z = dim X, Y e Z si intersecano in un numero finito di punti semplici sia su Y che su Z e, in ciascuno di questi punti , ed è altresì kähleriana. Le superfici con b1 dispari non sono neanche omeomorfe a superfici proiettive, e non ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] G è finito?
B. Il problema limitato di Burnside. Se G ha un numero finito di generatori ed esiste un r tale che xr = 1 per tutti π e il segno è + o − a seconda che π sia pari o dispari. L'algebra di tutte le matrici r × r ha dimensione r2 e pertanto ...
Leggi Tutto
Fermat, ultimo teorema di
MMassimo Bertolini
di Massimo Bertolini
SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] per 4 oppure per un primo dispari p, l'UTF si riduce a dimostrare che l'equazione di esponente primo dispari
xp + yp = zp
non gli esponenti) basato su tecniche profonde della teoria algebrica dei numeri (v. Washington, 1982; v. Marcus, 1977). Alla ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] n pseudoprimo in una base b (con 0⟨b⟨n) se, posto n−1=2st, con t dispari, o si ha bt≡1 modulo n, o esiste r, 0≤r⟨n, con b2rt≡−1 modulo n. Se n è un numero primo, esso è pseudoprimo in ogni base, mentre se è composto, è pseudoprimo in al più un quarto ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] (h) tende al limite λ per h che tende a 0, in simboli:
dove λ è un numero reale, se per ogni ε⟨0, esiste un δ⟨0 tale che ∣λ−g(h)∣>ε, anche uno ‛zero' del polinomio), dove n è un intero dispari. Sia ora R′ un altro corpo ordinato che soddisfi a) ...
Leggi Tutto
Scienza indiana: periodo classico. Matematica
Takao Hayashi
Matematica
'Gaṇita' ('matematica')
Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] per base cento anziché dieci e prevede quindi l'introduzione di un nuovo termine per ogni multiplo di cento; se 10n (dove n è un numerodispari maggiore di 6 o 8) si chiama x, 10n+1 è detto mahā-x ('grande x'). Il sistema jaina è invece sulla base di ...
Leggi Tutto
Scienza indiana: periodo vedico. Discipline ausiliarie dei Veda
Christopher Minkowski
Takao Hayashi
David Pingree
Discipline ausiliarie dei Veda
Testi per i rituali solenni (Śrautasūtra)
di Christopher [...] è adottata rispettivamente per ciascuno degli strati dispari e per ciascuno degli strati pari, e fig. 1 della Tav. III, e sia AB=a, dove a2 è il più grande numero quadrato minore di n; sia così n=a2+r, dove a2 e r rappresentano, rispettivamente, ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] razionale non presenta alcuna difficoltà.
La dimostrazione del teorema per un polinomio di grado dispari, a coefficienti reali, si basa su una proprietà dei numeri reali. Dopo aver ridotto, senza perdere di generalità, il polinomio alla forma xn+a1xn ...
Leggi Tutto
La scienza in Cina: l'epoca Song-Yuan. La matematica
Karine Chemla
Annick Horiuchi
Andrea Eberhard-Bréard
La matematica
La rinascita della matematica e la tarda tradizione settentrionale
di Karine [...] primi (a/δ, b), dove δ è il massimo comune divisore di a e b: 'dispari' esprime in questo caso l'assenza di divisori comuni dei due numeri. Ulteriori esempi possono essere la nozione di 'riduzione pari' (yueou), che designa una trasformazione analoga ...
Leggi Tutto
PROBABILITÀ
Italo Scardovi
Giorgio Dall'Aglio
Misura della probabilità
di Italo Scardovi
La probabilità come numero reale
Nel parlar comune, 'probabilità' è parola che esprime incertezza, ora per [...] resterà rivolta verso l'alto. La probabilità dell'evento 'cifra dispari nel lancio di un dado' è allora fissata nel quoziente =n. La probabilità così determinata tende a variare con il numero n delle prove, e tende pure a variare ripetendo altre serie ...
Leggi Tutto
dispari
dìspari (ant. dispàri) agg. [dal lat. dispar -ăris, comp. di dis-1 e par «pari»]. – 1. Non pari, cioè non divisibile per 2: numeri d., i numeri interi 1, 3, 5, 7, ecc.; o espresso da un numero dispari: i giorni d. della settimana,...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...