sottovarieta
sottovarietà [Comp. di sotto- e varietà] [ALG] Rispetto a una data varietà V, un sottoinsieme di V che ha una struttura di varietà dello stesso tipo della V e a questa opportunamente subordinata. [...] d. ◆ [ALG] S. integrale di una distribuzione: v. varietà differenziabili: VI 490 e. ◆ [MCC] S. isotropa, lagrangiana e lagrangiana omogenea: v. meccanica analitica: III 660 a, c, f. ◆ [ALG] S. massimale e minimale: v. varietà riemanniane: VI 510 c ...
Leggi Tutto
descrizione
descrizióne [Der. del lat. descriptio -onis "l'atto del descrivere e l'elaborato in cui ciò si traduce", dal part. pass. descriptus di describere (→ descrittivo)] [MCC] D. lagrangiana ed [...] grandezze sono riferite, rispettiv., alla particella singola oppure al punto generico dello spazio: v. meccanica dei continui: III 688 f. ◆ [MCS] D. ridotta della meccanica statistica: lo stesso che d. macroscopica, cioè d. del sistema in termini di ...
Leggi Tutto
PROGRAMMAZIONE NON LINEARE
Amato Herzel
(App. IV, III, p. 70)
Sia nel campo metodologico, sia in quello computazionale, si sono registrati negli ultimi tempi notevoli progressi. Ci si limiterà qui a [...] di equilibrio di un'economia o di un mercato, la meccanica strutturale, i problemi di trasporto e quelli di arresto ricavato viene utilizzato per operare un aggiornamento della funzione lagrangiana e, quindi, del gradiente per eseguire un nuovo ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] mettono in evidenza i limiti della concezione 'algebrica' lagrangiana. D'altra parte, Cauchy condivide con Lagrange l' da Alfred Clebsch (1833-1872). Dopo gli iniziali studi di meccanica teorica e fisica matematica, a seguito dell'incontro con Paul ...
Leggi Tutto
L'Eta dei Lumi: matematica. Gli sviluppi del calcolo in Gran Bretagna
Niccolò Guicciardini
Gli sviluppi del calcolo in Gran Bretagna
Un declino della matematica britannica?
Il metodo delle flussioni [...] Gli studi di Simpson sull'attrazione degli ellissoidi e sulla meccanica celeste sono invece meno noti; nonostante l'indubbia qualità matematica sul metodo algebrico degli operatori favorito dalla scuola lagrangiana e sarà questo metodo ‒ già difeso da ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
La matematica
Luigi Pepe
L’Italia è stata per cinque secoli al centro della ricerca e degli insegnamenti matematici. A partire dalla seconda metà del 12° sec., quando Gherardo da Cremona, Platone da [...] solo, allo studio del movimento della Luna – esempio del problema meccanico dei tre corpi, che richiede per la soluzione lunghi calcoli e di calcolo sublime (1831), opera di derivazione lagrangiana, ma attenta anche ai contributi alla geometria ...
Leggi Tutto
GENOCCHI, Angelo
Livia Giacardi
Nacque a Piacenza il 5 marzo 1817 da Carlo, agiato possidente, e da Carolina Locatelli. Fin da giovanissimo il G. si distinse negli studi, in particolar modo in quelli [...] J.L. Lagrange e dall'altro una grande attenzione alle scienze applicate, quali l'astronomia, l'idraulica e la meccanica. L'influenza lagrangiana era così sentita che il processo di rigorizzazione nel campo dell'analisi, iniziato da A.L. Cauchy, ebbe ...
Leggi Tutto
DE FILIPPIS, Vincenzo
Ugo Baldini
Nacque a Tiriolo (Catanzaro) il 4 apr. 1749 da Vito e Laura Micciulli.
La famiglia si collocava probabilmente nel "ceto civile" degli uffici e delle professioni: ciò, [...] moto in generale, il secondo sulla statica, il terzo sulla dinamica) anticipassero per qualche verso l'idea lagrangiana d'una meccanica analitica; va tuttavia osservato che non solo i mezzi matematici attingibili al D. erano nettamente più limitati ...
Leggi Tutto
simmetria
simmetrìa [Der. del gr. symmetría, comp. di sy´n "insieme" e métron "misura"] [LSF] Proprietà d'invarianza delle funzioni descriventi un sistema fisico rispetto a date trasformazioni, di cui [...] alle trasformazioni di Poincaré delle densità di lagrangiana nella fisica delle particelle o l'invarianza rispetto alle rotazioni dell'operatore hamiltoniano in un campo di forze centrali nella meccanica quantistica non relativistica o, infine, l'uso ...
Leggi Tutto
azione
azióne [Der. del lat. actio- onis, dal part. pass. actus di agere "agire"] [LSF] (a) Termine usato generic. come sinon. di forza: a. molecolari, a. a distanza, ecc.; (b) Il modo con cui determinati [...] coordinate agli istanti t₀ e t₁; gli estremali dell'a. lagrangiana (o ridotta) ∫2Tdt e dell'a. jacobiana (o di sul dielettrico: v. dielettrico: II 126 c. ◆ [MCQ] A. nella meccanica quantistica: v. azione. ◆ [MCF] A. locale: v. fluidi non newtoniani ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocita
velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...