ignorabile
ignoràbile [Der. di ignorare "che può essere trascurato"] [MCC] Coordinate i.: quelle dalle quali non dipende la lagrangiana di un sistema: v. meccanica analitica: III 655 a. ...
Leggi Tutto
descrizione
descrizióne [Der. del lat. descriptio -onis "l'atto del descrivere e l'elaborato in cui ciò si traduce", dal part. pass. descriptus di describere (→ descrittivo)] [MCC] D. lagrangiana ed [...] euleriana: quelle nelle quali le grandezze sono riferite, rispettiv., alla particella singola oppure al punto generico dello spazio: v. meccanica dei continui: III 688 f. ◆ [MCS] D. ridotta della meccanica ...
Leggi Tutto
Piola Gabrio
Piòla Gabrio [STF] (Milano 1791 - ivi 1850) Prof. di matematica a Milano. ◆ [MCC] Primo tensore di P.-Kirchhoff: il tensore degli sforzi in un mezzo continuo, nella descrizione lagrangiana: [...] v. meccanica dei continui: III 690 f ...
Leggi Tutto
Noether Amalie Emmy
Noether 〈nö´öter〉 Amalie Emmy [STF] (Erlangen 1882 - Bryn Mawr, Pennsylvania, 1935) Prof. di matematica nell'univ. di Gottinga (1922) e poi in quella di Bryn Mawr (1933). ◆ [ALG] [...] [MCC] Teorema di N.: mette in relazione le simmetrie della lagrangiana di un sistema con le sue quantità conservate: v. moto, costanti del: IV 124 f. Tale teorema, enunciato, nel 1918, ha un ruolo cruciale nella moderna teoria dei campi. ...
Leggi Tutto
sottovarieta
sottovarietà [Comp. di sotto- e varietà] [ALG] Rispetto a una data varietà V, un sottoinsieme di V che ha una struttura di varietà dello stesso tipo della V e a questa opportunamente subordinata. [...] : VI 337 d. ◆ [ALG] S. integrale di una distribuzione: v. varietà differenziabili: VI 490 e. ◆ [MCC] S. isotropa, lagrangiana e lagrangiana omogenea: v. meccanica analitica: III 660 a, c, f. ◆ [ALG] S. massimale e minimale: v. varietà riemanniane: VI ...
Leggi Tutto
teoria quantistica dei campi
Mauro Cappelli
Modello teorico che descrive le particelle elementari e le loro interazioni in un contesto quantistico relativistico. Tale teoria si basa sul carattere ondulatorio [...] processi di annichilazione-formazione). Il formalismo della teoria quantistica dei campi si basa sulle densità di lagrangiana (dal cui integrale spaziale si ricava la lagrangiana) per particelle con spin pari a 0, 1/2 e 1, e sulla generalizzazione a ...
Leggi Tutto
cinetico
cinètico [agg. (pl.m. -ci) Der. del gr. kinetikós, da kinéo "muovere"] [LSF] Di grandezze o proprietà inerenti al moto e di solito aventi stretta connessione con questioni non solo geometriche [...] qh; tale uso deriva dal fatto che se per un punto si assumono le tre coordinate cartesiane come coordinate lagrangiane, i tre momenti c. s'identificano con le componenti cartesiane della quantità di moto. ◆ [MCS] Teoria c. dei gas: parte della ...
Leggi Tutto
materiale 1
materiale1 [agg. Der. del lat. materialis, da materia] [LSF] [MCC] Che consta di materia o che si riferisce a proprietà della materia: corpo m., corpo ordinario, esistente nel mondo naturale [...] gravitazionali, inerziali, ecc. di questa; variabile m. (in partic., coordinata m., ecc.), lo stesso che variabile (coordinata, ecc.) lagrangiana: v. cinematica: I 698 d. ◆ [MCC] Derivata m.: lo stesso che derivata totale: v. cinematica: I 598 e ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] /(m+n)1, (1/p)+(1/q)=1, am,bn>0. ◆ Equazione, o funzione, di H.-Schmidt: v. equazioni integrali: II 479 c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. ◆ Mattone di H.: lo stesso che cubo di H. (v. sopra ...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] fluido bidimensionale incomprimibile; permette di costruire la forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale, dati i vettori a, b, c, d, è (a╳b)✄(c╳d)= (a✄c ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocita
velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...