cinetico
cinètico [agg. (pl.m. -ci) Der. del gr. kinetikós, da kinéo "muovere"] [LSF] Di grandezze o proprietà inerenti al moto e di solito aventi stretta connessione con questioni non solo geometriche [...] qh; tale uso deriva dal fatto che se per un punto si assumono le tre coordinate cartesiane come coordinate lagrangiane, i tre momenti c. s'identificano con le componenti cartesiane della quantità di moto. ◆ [MCS] Teoria c. dei gas: parte della ...
Leggi Tutto
materiale 1
materiale1 [agg. Der. del lat. materialis, da materia] [LSF] [MCC] Che consta di materia o che si riferisce a proprietà della materia: corpo m., corpo ordinario, esistente nel mondo naturale [...] gravitazionali, inerziali, ecc. di questa; variabile m. (in partic., coordinata m., ecc.), lo stesso che variabile (coordinata, ecc.) lagrangiana: v. cinematica: I 698 d. ◆ [MCC] Derivata m.: lo stesso che derivata totale: v. cinematica: I 598 e ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] /(m+n)1, (1/p)+(1/q)=1, am,bn>0. ◆ Equazione, o funzione, di H.-Schmidt: v. equazioni integrali: II 479 c. q Lagrangiana di H., o di H.-Einstein: v. unificazione dei campi classici: VI 400 a. ◆ Mattone di H.: lo stesso che cubo di H. (v. sopra ...
Leggi Tutto
azione
azióne [Der. del lat. actio- onis, dal part. pass. actus di agere "agire"] [LSF] (a) Termine usato generic. come sinon. di forza: a. molecolari, a. a distanza, ecc.; (b) Il modo con cui determinati [...] ed energia potenziale V che abbiano fissati i valori q(t₀) e q(t₁) delle coordinate agli istanti t₀ e t₁; gli estremali dell'a. lagrangiana (o ridotta) ∫2Tdt e dell'a. jacobiana (o di Maupertuis) ∫[2(E+V)]1/2ds, dove ds è l'elemento di lunghezza dell ...
Leggi Tutto
derivata
derivata [s.f. dall'agg. derivato] [ANM] Il risultato dell'operazione di derivazione: nella sua forma più semplice, cioè nel caso in cui f(x) sia una funzione reale di una variabile reale x, [...] /dt=(ðf/ðt)+Σi=3i=1 (ðf/ðxi)(ðxi/ðt), dove ðf/ðt è la d. euleriana (v. sopra). ◆ [ANM] D. materiale: lo stesso che d. lagrangiana. ◆ [ANM] D. normale: data una funzione definita in un dominio D⊂R2 e una curva C definita su D, è, in ogni punto (x,y)∈D ...
Leggi Tutto
Lagrange Giuseppe Luigi
Lagrange 〈lagràngë〉 (it. Lagràngia) Giuseppe Luigi (in fr. Joseph-Louis) [STF] (Torino 1736 - Parigi 1813) Prof. di matematica nella Scuola di artiglieria a Torino (1755), poi, [...] fluido bidimensionale incomprimibile; permette di costruire la forma delle linee di velocità del fluido. ◆ [MCC] Funzione di L.: lo stesso che lagrangiana. ◆ [ANM] Identità di L.: nel calcolo vettoriale, dati i vettori a, b, c, d, è (a╳b)✄(c╳d)= (a✄c ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] nel quale, aderendo a un sostanziale pluralismo, presentava anche il metodo dei differenziali di Leibniz ed Euler e la teoria lagrangiana. Al Traité, vera e propria summa dell'analisi matematica dell'epoca, era ispirato il manuale che egli adottava a ...
Leggi Tutto
lagrangiano
lagrangiano [agg. Der. del cognome di G.L. Lagrange] [MCC] Qualifica delle grandezze descrittive della dinamica di un sistema materiale continuo quando sono riferite non al generico punto [...] l.: quella di un sistema continuo fatta secondo il punto di vista l. (v. oltre). ◆ [MCC] Formulazione l.: lo stesso che lagrangiana di un sistema. ◆ [MCC] Forza l.: v. meccanica analitica: III 654 e. ◆ [ALG] Intorno l.: v. oltre: Spazio lagrangiano ...
Leggi Tutto
PIOLA DAVERIO, Gabrio
Danilo Capecchi
PIOLA DAVERIO, Gabrio. – Nacque a Milano il 15 luglio 1794 da Giuseppe Maria, patrizio e giureconsulto milanese, e da Angiola Casati, in una famiglia ricca e nobile.
Venne [...] sulla meccanica analitica «dell’immortale Lagrange», vincendolo con un lungo articolo sulle applicazioni della meccanica lagrangiana (Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi, Milano 1825). Nel ...
Leggi Tutto
teorema di Fritz John
Angelo Guerraggio
Condizione necessaria che estende alla programmazione non lineare la classica condizione dei moltiplicatori di Lagrange (nota quando tutti i vincoli erano invece [...] in x0, allora esiste un vettore (ϑ0,λ0), diverso dal vettore nullo e a componenti non negative, tale che la funzione lagrangiana L=ϑ0 f (x)−∑λi0gi (x) annulla nel punto x0 tutte le sue derivate parziali rispetto alle variabili xj. Sono inoltre ...
Leggi Tutto
lagrangiano
agg. – Che si riferisce o è dovuto al matematico G. L. Lagrange (1736-1813). Nella meccanica analitica, coordinate l., parametri arbitrarî di numero finito (uguale al numero dei gradi di libertà) che determinano completamente la...
velocita
velocità s. f. [dal lat. velocĭtas -atis, der. di velox -ocis «veloce»]. – 1. La rapidità di movimento di un corpo, tanto maggiore quanto maggiore è il cammino percorso in un dato tempo, valutabile quindi dal rapporto tra il cammino...