Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] quella seconda è negativa (positiva); per le funzioni di due variabili accade che le due derivate parziali prime sono nulle, l’hessiano è < 0 (> 0) e le due derivate parziali seconde sono entrambe negative (positive). Per il massimo e il minimo ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] :
Da considerazioni puramente geometriche sui punti di flesso della curva di equazione f=0 (f è in questo caso un polinomio omogeneo), Hesse, che non conosceva i risultati di Boole, dimostrò nel 1844 che se f si trasforma in T(f), allora φ(f)=δ2φ ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali alle derivate parziali
Thomas Archibald
Equazioni differenziali alle derivate parziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] sempre un segno costante" (1823b, pp. 93-94).
Questo criterio fu enunciato in modo più chiaro da Ludwig Otto Hesse (1811-1874), uno studente di Jacobi, in un articolo del 1844, Über die Elimination der Variabeln aus drei algebraischen Gleichungen ...
Leggi Tutto
hessiano
〈e-〉 agg. [der. del nome del matematico ted. L. O. Hesse (1811-1874)]. – Curva h. (o hessiana s. f.), per una data curva algebrica piana, è la curva algebrica luogo dei punti doppî delle polari della curva, che incontra quest’ultima,...