Cauchy Augustin-Louis
Cauchy ⟨koshì⟩ Augustin-Louis (Parigi 1789 - Sceaux, Seine, 1857) Ingegnere, poi (1815) prof. nella Ècole Polytechnique, alla Sorbona e al Collège de France; non accettando il [...] di C.-Riemann: è la condizione di analiticità di una funzionedivariabile complessa, soluzione di un sistema di equazioni differenziali dette equazioni di C.-Riemann: v. funzionidivariabile nel campo reale: II 448 f. qe Problema di C. astratto ...
Leggi Tutto
differenziale
differenziale [agg. e s.m. Der. di differenza] [ANM] Nella sua forma più semplice, cioè per funzionirealidivariabilereale, è un funzionale lineare (propr. d. primo) che a ogni f:I⊂R→R [...] indipendente x, mentre sono equazioni d. alle derivate parziali quelle in cui l'incognita è una funzionedi più variabili z=z(x,y,...). Ordine di un'equazione d. è l'ordine massimo delle derivate che in essa compaiono. Un'equazione d. si dice ...
Leggi Tutto
continuo 1
contìnuo1 [agg. Der. del lat. continuus, da continere "tenere unito", comp. di cum "insieme" e tenere, e quindi "non interrotto"] [ALG] Applicazione c.: applicazione definita su uno spazio [...] j si ha aj=∞, ossia la frazione c. si tronca. La frazione c. si denota di solito con il simbolo [a₀; a₁; a₂; ...].
◆ [ANM] Funzione c.: una funzione f(x) divariabilereale a valore reale è tale in un punto x0 se limx®x0 f(x)=f(x0), ossia se per ...
Leggi Tutto
Economia
Attività che provvede alla collocazione sul mercato delle merci e dei servizi, e quindi l’insieme dei punti di vendita che ne assicurano agli acquirenti la disponibilità.
Nell’ingegneria gestionale [...] studio delle equazioni differenziali. Limitandoci per semplicità al caso di una sola variabile, si consideri una funzionereale ϕ(x) di una variabilereale che sia di classe C∞ (cioè dotata delle derivate di tutti i possibili ordini) e che sia nulla ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] +k2a2)=k1(ωa1)+k2(ωa2).
Nel caso particolare che sia B=K, l’o. lineare da A in K si chiama di solito funzionale lineare di A. Esempio: l’insieme A delle funzionirealidi due variabilireali, indefinitamente derivabili in tutto il piano, è un esempio ...
Leggi Tutto
Agraria
Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine [...] di sistema di coordinate locali nell’aperto U in quanto permette di associare, a ogni punto P di U, n numeri reali (x1, ..., xn) che sono le coordinate del punto corrispondente di alle funzionidi 1 variabile complessa con 2 periodi (funzioni ...
Leggi Tutto
Lo spazio dalle dimensioni illimitate, o il tempo senza confini.
Il pensiero greco si è occupato fin dalle sue origini del concetto di infinito. Delle soluzioni proposte dai pensatori della scuola ionica [...] dei numeri razionali).
Si dice che una funzione y=f(x), della variabilereale x, tende all’i. (positivo) per della retta r) e rette che hanno i rispettivi punti all’i. su di una stessa retta sono rette parallele a uno stesso piano ma non, in generale ...
Leggi Tutto
Matematica
Calcolo delle variazioni
Ramo della matematica che studia i metodi per ottenere i massimi e i minimi di un insieme di elementi (in generale funzioni) considerati come punti di un opportuno spazio [...] , oltre che in teoria della visione, si incontrano anche in varie questioni di fisica matematica.
Funzioni a v. limitata
È tale una funzionereale f della variabilereale x, definita sull’intervallo chiuso [a, b] se, qualsiasi sia la suddivisione ...
Leggi Tutto
Antropologia
Insieme di rassomiglianze e parallelismi esistenti fra elementi culturali elaborati da popolazioni differenti e lontane. Secondo la teoria della c. sostenuta nella seconda metà del 19° sec. [...] moderna.
Matematica
C. di una successione
Si dice che una successione a1, a2, ..., an, ... di numeri (reali o complessi) converge dei suoi termini. C. di una serie difunzioni Si dice che una serie difunzioni (divariabile complessa) definita da ∑∞ ...
Leggi Tutto
monotona, funzione In matematica, una funzione f(x), realedi una variabilereale, si dice m. se per ogni coppia di valori x′, x″ del suo insieme di definizione, per la quale sia x′<x″, risulta f(x′)≤f(x″) [...] funzione m. è derivabile in un intervallo, la sua derivata ha ivi segno costante, riuscendo f′(x)≥0 se f(x) è non decrescente oppure crescente; f′(x)≤0 se f(x) è non crescente oppure decrescente.
Per una successione a1, a2,... an,... di numeri reali ...
Leggi Tutto
funzione
funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
variabile
variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...