La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] raggiunto in corrispondenza a campi F tali che F−F*=0. Si osservi che questa è un'equazionedifferenziale del primo ordine, mentre l'equazione di Yang-Mills è del secondo ordine. Poiché il funzionale di Yang-Mills è differenziabile in corrispondenza ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] e finali, (ai,bi,ci) e (xi,yi,zi) oltre al tempo t) e imporre a essa di soddisfare in modo identico le equazionidifferenziali alle derivate parziali [21*]. È sufficiente invece considerare S come funzione di 3n+1 quantità (xi,yi,zi e t) e richiedere ...
Leggi Tutto
Atmosfera. Lo strato limite
Stefania Argentini
Gian Giuseppe Mastrantonio
Si definisce strato limite atmosferico (SLA) o strato limite planetario (SLP) la parte della troposfera direttamente influenzata [...] del vapore acqueo. La conservazione di queste grandezze dà origine a un sistema di equazionidifferenziali alle derivate parziali detto alle equazioni primitive, in quanto non presenta approssimazioni. Tale sistema permette di risolvere i moti ...
Leggi Tutto
L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti
Craig G. Fraser
Meccanica dei continui e dei sistemi discreti
Origine dei concetti di sforzo e di deformazione
La teoria matematica [...] parziali di Hamilton-Jacobi del problema:
dove H=T+V, l'energia totale, è l'hamiltoniana del sistema. La [19] è un'equazionedifferenziale non lineare alle derivate parziali del primo ordine nelle variabili q1,q2,…,qn, t e S, in cui S non appare ...
Leggi Tutto
La grande scienza. Sistemi dinamici
Valentin S. Afraimovich
Leonid A. Bunimovich
Jack K. Hale
Sistemi dinamici
Il nostro Universo è formato da oggetti che si muovono nello spazio e le cui caratteristiche [...] )=(0,1), ω(x0)={1}, α(x0)={0}. Se x0>1 allora γ(x0)=(0,∞), ω(x0)={1}.
Una soluzione periodica p(t) di un'equazionedifferenziale
è una soluzione che ha la seguente proprietà: esiste T>0 tale che p(t+T)=p(t) per ogni t. Il minimo numero T con ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] moto di Saturno si fosse rivelata soddisfacente. Per mostrare come questo termine si manifesta, esprimiamo la parte relativa a y dell'equazionedifferenziale:
dove E′ è l'anomalia eccentrica di Giove, n è il rapporto dei moti medi e θ=φ′−φ. Se (θ ...
Leggi Tutto
L'Eta dei Lumi: matematica. Meccanica variazionale
Helmut Pulte
Rüdiger Thiele
Meccanica variazionale
Le locuzioni 'meccanica classica' e 'meccanica newtoniana' sono, tradizionalmente, usate come sinonimi. [...] che gli stessi spostamenti virtuali δsi diventano visibili. Dato che i vincoli sono espressi per mezzo di equazioni o equazionidifferenziali, è sempre possibile, accanto a uno spostamento virtuale δsi lo spostamento opposto −δsi (per es., quando la ...
Leggi Tutto
Caos
Robert L. Devaney
Introduzione storica
Secondo l'accezione più comune, il termine ‛caos' significa totale annientamento dell'ordine o assenza di qualsiasi struttura. Analogamente, in matematica, [...] cambiano con continuità col passare del tempo. Il moto dei pianeti, per esempio, è governato da un sistema di equazionidifferenziali, che rappresenta il cosiddetto problema degli n-corpi, dove il moto di ciascun pianeta è determinato dalla legge di ...
Leggi Tutto
La grande scienza. Vita e morte delle stelle
Virginia Trimble
Vita e morte delle stelle
Uno sguardo sommario al cielo ci mostra che le stelle non appaiono tutte ugualmente luminose (ciò era già noto [...] solare. I calcoli che si effettuano per studiare la struttura e l'evoluzione delle stelle hanno inizio dal seguente sistema di equazionidifferenziali non lineari
dove P e T sono la pressione e la temperatura a distanza radiale r; ϱ la densità in r ...
Leggi Tutto
L'Ottocento: fisica. L'acustica
Dieter Ullmann
Myles W. Jackson
L'acustica
Acustica fisiologica: Helmholtz
di Dieter Ullmann
Hermann von Helmholtz (1821-1894), uno dei massimi scienziati del XIX sec., [...] frequenza di vibrazione di un sistema, per il quale è impossibile fornire una soluzione esatta usando le equazionidifferenziali, basandosi sulle energie potenziale e cinetica massime, secondo un metodo più tardi chiamato il metodo di Rayleigh ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
elettromagnetismo
s. m. [comp. di elettro- e magnetismo; il termine compare dapprima nella forma gr. mod. ἠλεκτρομαγνητισμός come titolo del libro III, parte II, dell’opera Magnes sive de arte magnetica (1641) del padre A. Kircher]. – Parte...