Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] globale di un s. d. integrabile. Nella seconda linea di ricerca si fa cadere l'ipotesi che il gruppo di simmetria sia abeliano. In questo caso è come se i singoli gruppi a un parametro in cui si può analizzare il gruppo di simmetria non cooperassero ...
Leggi Tutto
quaternione
quaternióne [Der. del lat. quaternio -onis, da quaterni (→ quaterna)] [ALG] Numeri che rappresentano una generalizzazione dei numeri complessi; il generico q di essi si rappresenta come q=a+bi+cj+dk, [...] dei q.: gruppo non commutativo, di 8 elementi, costituito dalle quattro unità dei q. e dalle loro opposte; è un gruppo hamiltoniano e anzi si dimostra che ogni gruppo hamiltoniano è prodotto diretto del gruppo dei q. per un opportuno gruppo abeliano. ...
Leggi Tutto
Biologia
G. sanguigni
Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni).
G. tissutali
Insieme di individui istocompatibili, tra [...] {aα} di un g. G, dal quale G è generato, si chiama un sistema di generatori.
Caratteri di un gruppo
Dato un g. abeliano G, finito, di elementi a1, a2, ..., an, si chiama carattere di G ogni funzione ϕ(ai) a valori complessi, definita in G, tale ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] 'equazione algebrica è risolubile per radicali se e solo se ha grado minore o uguale a quattro. D'altra parte, come Abel ben sapeva, esistono equazioni di grado più elevato risolubili per radicali. È il caso, per esempio, di questa equazione di sesto ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] dei campi di classi, le cui generalizzazioni al caso non abeliano (congetture di Langlands e di Bloch-Kato) occupano un posto complessa. Kronecker si era interessato molto ai lavori di Abel e di Galois sulle equazioni, ma non approvava l' ...
Leggi Tutto
Conformità o equivalenza tra più parti, termini, elementi.
Biologia
Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] equivalenza costituisce il gruppo quoziente Hp=Zp/Bp detto p-mo gruppo di o. del complesso di catene considerato. Il gruppo abeliano Hp può non essere libero; pertanto si decompone nella somma diretta di un gruppo libero Rp e di un gruppo non libero ...
Leggi Tutto
In arte e architettura, persona od oggetto che l’artista ritrae o riproduce, oppure esemplare preparatorio dell’opera finale. Nel linguaggio scientifico, costruzione schematica, puramente ipotetica o realizzata [...] dimostrare che la teoria G, prima presentata, non è sintatticamente completa. Infatti, siano U(α) e U(β) due gruppi, il primo abeliano e il secondo no. Essi sono entrambi m. di G ma non elementarmente equivalenti perché la formula x+y=y+x è vera ...
Leggi Tutto
Finito
Antonio Machì
(XV, p. 399)
Matematica del finito
Diversi filoni della ricerca matematica che mostrano particolare vitalità si possono ricondurre all'interesse per i problemi del finito. L'analisi [...] , si considerarono non singoli gruppi, ma famiglie di gruppi aventi determinate proprietà.Così, J.Walter nel 1969 classificò i gruppi semplici con 2-Sylow abeliano, che sono i seguenti: 1) L₂(q), q$5 e q;63 mod8; 2) L₂(2n), n$2; 3) gruppi del tipo di ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] un corpo di numeri algebrici F, estensione di Galois di ℚ, tale che il suo gruppo di Galois sia G? Se G è abeliano la risposta è positiva come è facile provare. Shafarevich, nel 1954, ha mostrato che la risposta è ugualmente affermativa nel caso in ...
Leggi Tutto
abeliano
agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...