duale
duale [agg. e s.m. Der. del lat. dualis, da duo "due"] [LSF] Di ente che sia in relazione di dualità (←) con un altro. ◆ [ANM] D. di un gruppo abeliano: v. algebre di operatori: I 94 d. ◆ [ALG] [...] Fibrato d.: v. fibrati: II 571 a. ◆ [ALG] Rappresentazione d. di un gruppo: v. gruppi, rappresentazione dei: III 122 b. ◆ [ALG] Spazio d.: di uno spazio vettoriale V, è l'insieme dei funzionali lineari ...
Leggi Tutto
Kronecker-Weber, teorema di
Kronecker-Weber, teorema di in algebra, stabilisce che se K è una estensione finita abeliana del campo Q dei numeri razionali, cioè un campo di numeri algebrici il cui gruppo [...] di Galois su Q è abeliano, allora esiste una radice dell’unità ζ ∈ C tale che K ⊂ Q(ζ). La possibilità di estendere il teorema ad altri campi numerici oltre a Q costituisce il dodicesimo problema di → Hilbert. ...
Leggi Tutto
rotazioni con lo stesso centro, gruppo delle
rotazioni con lo stesso centro, gruppo delle insieme R delle rotazioni rP del piano attorno a un fissato centro P con l’operazione ∘ di composizione di trasformazioni. [...] La struttura (R, ∘) è un gruppo abeliano. Infatti:
• il prodotto rP(α1) ∘ rP(α2) di due qualsiasi rotazioni di centro P è una rotazione rP(α1 + α2), di centro P e ampiezza α = α1 + α2;
• la rotazione rP(0) di centro P e ampiezza nulla è elemento ...
Leggi Tutto
integrale
integrale [s.m. e agg. Der. del lat. integralis, da integer "intero"] [LSF] Relativo alla considerazione di una totalità di elementi o che concorre alla costituzione di questa totalità. ◆ [ANM] [...] Il procedimento in cui si traduce l'operazione di integrazione (←) e il risultato di esso. ◆ [ANM] I. abeliano: v. superfici di Riemann: V 5 d. ◆ [ANM] I. completo: v. meccanica analitica: III 656 b. ◆ [ANM] I. curvilineo di una funzione: per una ...
Leggi Tutto
semigruppo
semigruppo insieme A dotato di un’operazione binaria interna associativa (→ associatività); formalmente si definisce come una coppia (A, ∗), dove A è un insieme non vuoto e dove ∗: A × A → [...] A è un’operazione binaria associativa su A. Se l’operazione ∗ è commutativa, allora il semigruppo è detto commutativo o abeliano. Similmente al caso dei gruppi, un semigruppo si dice moltiplicativo se l’operazione è trattata formalmente come una ...
Leggi Tutto
quadrinomio
quadrinòmio [Comp. di quadri- e -nomio di monomio, binomio, ecc.] [ALG] Polinomio di quattro termini, cioè somma di quattro monomi. ◆ [ALG] Gruppo q. (ted. Vieriergruppe), o gruppo di Klein [...] : gruppo del quarto ordine, formato di quattro elementi tali che il loro quadrato è uguale all'elemento neutro, e quindi gruppo abeliano, non ciclico e isomorfo al gruppo dei movimenti rigidi del piano che trasformano un rettangolo in sé stesso. ...
Leggi Tutto
Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] sua coomologia è la successione dei gruppi quozienti Hn(S)=ker(δn)/Im(δn–1). Dato un complesso di catene (S*, ∂*) e un gruppo abeliano G, sia Sn il gruppo degli omomorfismi di Sn in G, e sia δn l’omomorfismo indotto da ∂n+1. La coppia (S*, δ*) così ...
Leggi Tutto
modulo
mòdulo [Der. del lat. modulus, dim. di modus "misura"] [LSF] Termine, accompagnato da opportune qualificazioni, per indicare grandezze caratteristiche di certi fenomeni o di certi congegni: m. [...] di una ruota dentata, ecc. ◆ [ALG] Generalizzazione del concetto di spazio vettoriale su un campo: è un gruppo abeliano su un anello. ◆ [FTC] (a) Nelle costruzioni modulari, unità di base, che definisce forma e dimensioni delle unità componenti ...
Leggi Tutto
Pontrjagin Lev Semenovic
Pontrjagin (o Pontryagin) 〈pantriàg✄in〉 Lev Semenovič [STF] (n. Mosca 1908) Prof. di matematica nell'univ. di Mosca (1935). ◆ [ALG] Classi di P.: una delle classificazioni dei [...] di sistemi: v. controllo, teoria del: I 749 f. ◆ [ANM] Teorema, o principio, di dualità di P.: afferma che ogni gruppo abeliano localmente compatto è isomorfo al gruppo dei suoi caratteri: v. algebre di operatori: I 94 d. ◆ [ALG] Teorema di P. e Thom ...
Leggi Tutto
rototraslazione
rototraslazióne [Comp. di roto- e traslazione] [ALG] Movimento rigido che si ottiene eseguendo prima una rotazione e poi una traslazione (o viceversa); il termine è usato solo con rifer. [...] che nel piano ogni r. si riduce a una rotazione. ◆ [ALG] Gruppo delle r.: l'insieme di tutti i movimenti nel piano o nello spazio; si tratta di un gruppo non abeliano (sono invece abeliani il sottogruppo delle traslazioni e quello delle rotazioni). ...
Leggi Tutto
abeliano
agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...