modulo su un anello A
modulo su un anello A o A-modulo, gruppo abeliano additivo M dotato di un’operazione esterna di moltiplicazione per gli elementi dell’anello
in modo che siano soddisfatti i seguenti [...] di spazio vettoriale su un campo; pertanto la nozione di modulo generalizza quella di spazio vettoriale. Ogni gruppo abeliano (che assumiamo essere additivo) può essere considerato come modulo sull’anello Z dei numeri interi, ponendo
Per modulo ...
Leggi Tutto
campo delle frazioni
Luca Tomassini
Sia D un dominio di integrità (cioè un anello abeliano nel quale a≠0 e b≠0 implica ab≠0, per ogni a,b∈D). Sussiste allora il seguente teorema: ogni dominio di integrità [...] si può immergere in un campo. In altre parole, per ogni dominio di integrità esistono un campo F e un omomorfismo iniettivo: Φ: D→F. La dimostrazione di questo risultato è ottenuta costruendo esplicitamente ...
Leggi Tutto
gruppo commutativo
gruppo commutativo gruppo la cui operazione gode della proprietà commutativa. È anche detto gruppo abeliano (→ gruppo). ...
Leggi Tutto
Mordell, teorema di
Mordell, teorema di in geometria algebrica, stabilisce che l’insieme dei punti razionali di una curva ellittica forma un gruppo abeliano finitamente generato rispetto alla moltiplicazione [...] definita sulla curva. Ogni curva ellittica possiede, quindi, un sottogruppo finito di punti razionali sulla curva, da cui generare tutti i successivi punti razionali (→ Birch e Swinnerton-Dyer, congettura ...
Leggi Tutto
. Fra gl'integrali abeliani (v. abeliano) si dicono ellittici gl'integrali della forma
dove Φ denota una funzione razionale dei suoi due argomenti e Q un polinomio di 3° o 4° grado in x (l'un caso essendo [...] facilmente riducibile all'altro). La ragione del nome dipende dal fatto che ad integrali di questo tipo si riduce la lunghezza di un arco di ellisse (v. coniche), come pure di iperbole, di cicloide, di ...
Leggi Tutto
gruppo ciclico
gruppo ciclico gruppo in cui ogni elemento può essere ottenuto come potenza di un suo elemento g, detto generatore del gruppo. Un gruppo ciclico è abeliano e ogni suo sottogruppo è ciclico; [...] dato un elemento g ∈ G, il minimo intero n, se esiste, per il quale gn è uguale all’elemento neutro del gruppo è detto ordine di g; se tale numero non esiste g ha ordine infinito. Se G è un gruppo finito ...
Leggi Tutto
gruppi di coomologia dei fasci
Fabrizio Andreatta
Sia X uno spazio topologico. Dato una fascio F di gruppi abeliani su X, sia H0(X,F) il gruppo abeliano delle sezioni globali di F su X. Il funtore che [...] associa a un fascio F il gruppo H0(X,F) è esatto a sinistra cioè se f:E→F è un morfismo iniettivo di fasci, l’applicazione indotta H0(X,F)→H0(X,F) è anch’essa iniettiva. Tale funtore non è però esatto ...
Leggi Tutto
Algebra moderna. - L'"algebra moderna", che meglio si potrebbe chiamare "algebra astratta" o "algebra generale", si è sviluppata soprattutto negli ultimi venticinque anni dal connubio dell'algebra classica [...] del prodotto diretto fra algebre), e si trova allora che le classi costituiscono un gruppo (il gruppo di Brauer) abeliano (cfr. voce gruppo), generalmente infinito, ogni cui elemento è periodico; l'identità del gruppo è la classe delle algebre ...
Leggi Tutto
campo
campo struttura algebrica costituita da un insieme K* dotato di due operazioni binarie interne + e · : K × K* → K*, dette rispettivamente addizione e moltiplicazione, tali che: K* è un gruppo abeliano [...] ) rispetto all’addizione e l’insieme K**, ottenuto da K* escludendo l’elemento neutro dell’addizione, è un gruppo abeliano rispetto alla moltiplicazione (esso viene pertanto detto il gruppo moltiplicativo del campo K*); si richiede inoltre che le due ...
Leggi Tutto
omotetie con lo stesso centro, gruppo delle
omotetie con lo stesso centro, gruppo delle insieme delle omotetie con identico centro Z (nel piano o nello spazio), che forma un gruppo abeliano rispetto [...] al prodotto di trasformazioni: elemento neutro è l’identità (vista come omotetia di centro Z e rapporto 1) e l’inversa dell’omotetia di centro Z e rapporto k è l’omotetia di centro Z e rapporto 1/k. Ciascun ...
Leggi Tutto
abeliano
agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...